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1. Introduction

The study of BPS states in quantum field theory and in string theory is clearly a very

important topic. These states are generically protected against quantum corrections and

contain information regarding the strong coupling behaviour of supersymmetric field the-

ories and superstring theories. In the past years they were especially important in the

study of strong weak dualities, like the AdS/CFT conjecture [1] which gives a connection

between the BPS operators in conformal field theories and BPS states in string theory.

In this paper we discuss the set of one half BPS states in string theory realized as D3

branes wrapped on (generically non trivial) three cycles in the supergravity background

AdS5 × H, where H is a Sasaki-Einstein manifold [2, 3]. These states are holographically

dual to baryonic BPS operators in N = 1 four dimensional CFT s [4], which are quiver

gauge theories.

Recently, there has been renewed interest in generalizing the AdS/CFT correspon-

dence to generic Sasaki-Einstein manifolds H. This interest has been initially motivated

by the discovery of new infinite classes of non compact CY metrics [5 – 8] and the con-

struction of their dual N = 1 supersymmetric CFT [9 – 12].1. As a result of this line of

investigation, we now have a well defined correspondence between toric CY and dual quiver

gauge theories [10, 12, 14, 16, 15, 17 – 22]. The non toric case is still less understood: there

exist studies on generalized conifolds [23, 24], del Pezzo series [25 – 27], and more recently

there was a proposal to construct new non toric examples [28]

There has been some parallel interest in counting BPS states in the CFT s dual to

CY singularities [29, 30, 32, 31, 33, 34]. The partition function counting mesonic BPS

gauge invariant operators according to their flavor quantum numbers contains a lot of

information regarding the geometry of the CY [33, 35], including the algebraic equations

of the singularity. Quite interestingly, it also provides a formula for the volume of H [35].

This geometrical information has a direct counterpart in field theory, since, according to

the AdS/CFT correspondence, the volume of the total space and of the three cycles are

duals to the central charge and the R charges of the baryonic operators respectively [4, 37].

The existing countings focus on the mesonic gauge invariant sector of the CFT . Geo-

metrically this corresponds to consider giant graviton configurations [36] corresponding to

BPS D3 branes wrapped on trivial three cycles in H. In this paper we push this inves-

tigation further and we analyze the baryonic BPS operators, corresponding to D3 branes

wrapped on non trivial three cycles inside H. We succeed in counting BPS states charged

under the baryonic charges of the field theory and we write explicit partition functions at

fixed baryonic charge. We investigate in details their geometrical properties. In particular

we will show how to extract from the baryonic partition functions a formula for the volume

of the three cycles inside H. We will mostly concentrate on the toric case but our procedure

seems adaptable to the non toric case as well.

The paper is organized as follows. In section 2 we review some basic elements of toric

geometry. In section 3 we formulate the general problem of describing and quantizing

the BPS D3 brane configurations. We will use homomorphic surfaces to parameterize

1See [13], and references therein, for an overview of analogous results for non-conformal fields theories.
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the supersymmetric BPS configurations of D3 brane wrapped in H, following results

in [38, 39].2 In the case where X is a toric variety we have globally defined homogeneous

coordinates xi which are charged under the baryonic charges of the theory and which we can

use to parametrize these surfaces. We will quantize configurations of D3 branes wrapped on

these surfaces and we will find the Hilbert space of BPS states using a prescription found by

Beasley [39]. The complete BPS Hilbert space factorizes in sectors with definite baryonic

charges. Using toric geometry tools, we can assign to each sector a convex polyhedron P .

The BPS operators in a given sector are in one-to-one correspondence with symmetrized

products of N (number of colors) integer points in P . In section 4 we discuss the assignment

of charges and we set the general counting problem. In section 5 we make some comparison

with the field theory side. In section 6, we will write a partition function ZD counting the

integer points in PD and a partition function ZD,N counting the integer points in the

symmetric product of PD. From ZD, taking a suitable limit, we will be able to compute

the volume of the three cycles in H, as described in section 7. Although we mainly focus

on the toric case we propose a general formula for the computation of the volume of the

three cycles valid for every type of conical CY singularity.

From the knowledge of ZD,N we can reconstruct the complete partition function for the

chiral ring of quiver gauge theories. This is a quite hard problem in field theory, since we

need to count gauge invariant operators modulo F-term relations and to take into account

the finite number of colors N which induces relations among traces and determinants.

The geometrical computation of ZD,N should allow to by-pass these problems. In this

paper we will mainly focus on the geometrical properties of the partition functions ZD,

although some preliminary comparison with the dual gauge theory is made in section 5.

In forthcoming papers, we will show how to compute the complete partition function for

selected examples and how to compare with field theory expectations [42].

2. A short review of toric geometry

In this section we summarize some basic topics of toric geometry; in particular we re-

view divisors and line bundles on toric varieties that will be very useful for the complete

understanding of the paper. Very useful references on toric geometry are [44, 43].

A toric variety VΣ is defined by a fan Σ: a collection of strongly convex rational

polyhedral cones in the real vector space NR = N ⊗Z R (N is an n dimensional lattice

N ≃ Z
n). Some examples are presented in figure 1.

We define the variety VΣ as a symplectic quotient [44, 43]. Consider the one dimen-

sional cones of Σ and a minimal integer generator ni of each of them. Call the set of one

dimensional cones Σ(1). Assign a “homogeneous coordinate” xi to each ni ∈ Σ(1). If d =

dimΣ(1), xi span C
d. Consider the group

G = {(µ1, . . . , µd} ∈ (C∗)d|
d

∏

i=1

µ<m,ni>
i = 1 , m ∈ Z

3} , (2.1)

2See [40, 41] for some recent developments in wrapping branes on non trivial three cycles inside toric

singularities.
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(0,0,0)

(0,0,1)

(−1,−1)

(1,0,1)

(0,1,1)

(0,1)

(1,0)

(1,1,1)

Figure 1: On the left: the fan for P2 with three maximal cones of dimension two which fill com-

pletely R2; there are three one dimensional cones in Σ(1) with generators {(1, 0), (0, 1), (−1,−1)}.

On the right: the fan for the conifold with a single maximal cone of dimension three; there are four

one dimensional cones in Σ(1) with generators {(0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 1, 1)}.

which acts on xi as

(x1, . . . , xd) → (µ1x1, . . . , µdxd) .

G is isomorphic, in general, to (C∗)d−n times a discrete group. The continuous part (C∗)d−n

can be described as follows. Since d > n the ni are not linearly independent. They

determine d − n linear relations:
d

∑

i=1

Q
(a)
i ni = 0 (2.2)

with a = 1, . . . , d − n and Q
(a)
i generate a (C∗)d−n action on C

d:

(x1, . . . , xd) → (µQ
(a)
1 x1, . . . , µ

Q
(a)
d xd) (2.3)

where µ ∈ C
∗.

For each maximal cone σ ∈ Σ define the function fσ =
∏

ni /∈σ xi and the locus S as

the intersection of all the hypersurfaces fσ = 0. Then the toric variety is defined as:

VΣ = (Cd − S)/G

There is a residual (C∗)n complex torus action acting on VΣ, from which the name toric

variety. In the following, we will denote with T n ≡ U(1)n the real torus contained in (C∗)n.

In all the examples in this paper G = (C∗)d−n and the previous quotient is interpreted

as a symplectic reduction. The case where G contains a discrete part includes further

orbifold quotients. These cases can be handled similarly to the ones discussed in the main

text.
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Using these rules to construct the toric variety, it is easy to recover the usual repre-

sentation for P
n:

P
n = (Cn+1 − {0})/{x ∼ µx}

where the the minimal integer generators of Σ(1) are ni = {e1, . . . , en,−
∑n

k=1 ek}, d = n+1

and Q = (1, . . . , 1) (see figure 1 for the case n = 2).

In this paper we will be interested in affine toric varieties, where the fan is a single cone

Σ = σ. In this case S is always the null set. It is easy, for example, to find the symplectic

quotient representation of the conifold:

C(T 1,1) = C
4/(1,−1, 1,−1)

where d = 4, n = 3, n1 = (0, 0, 1), n2 = (1, 0, 1), n3 = (1, 1, 1), n4 = (0, 1, 1) and we have

written (1,−1, 1,−1) for the action of C
∗ with charges Q = (1,−1, 1,−1).

This type of description of a toric variety is the easiest one to study divisors and line

bundles. Each ni ∈ Σ(1) determines a T -invariant divisor Di corresponding to the zero

locus {xi = 0} in VΣ. T -invariant means that Di is mapped to itself by the torus action

(C∗)n (for simplicity we will call them simply divisors from now on). The d divisors Di are

not independent but satisfy the n basic equivalence relations:

d
∑

i=1

< ek, ni > Di = 0 (2.4)

where ek with k = 1, . . . , n is the orthonormal basis of the dual lattice M ∼ Z
n with the

natural paring: for n ∈ N , m ∈ M < n,m >=
∑n

i=1 nimi ∈ Z. Given the basic divisors

Di the generic divisor D is given by the formal sum D =
∑d

i=1 ciDi with ci ∈ Z. Every

divisor D determines a line bundle O(D).3

There exists a simple recipe to find the holomorphic sections of the line bundle O(D).

Given the ci, the global sections of O(D) can be determined by looking at the polytope (a

convex rational polyhedron in MR):

PD = {u ∈ MR| < u, ni > ≥ − ci , ∀i ∈ Σ(1)} (2.5)

where MR = M⊗Z R. Using the homogeneous coordinate xi it is easy to associate a section

χm to every point m in PD:

χm =
d

∏

i=1

x<m,ni>+ci

i . (2.6)

Notice that the exponent is equal or bigger than zero. Hence the global sections of the line

bundle O(D) over VΣ are:

H0(VΣ,OVΣ
(D)) =

⊕

m∈PD∩M

C · χm (2.7)

3The generic divisor D on an affine cone is a Weil divisor and not a Cartier divisor [44]; for this reason the

map between divisors and line bundles is more subtle, but it can be easily generalized using the homogeneous

coordinate ring of the toric variety VΣ [45] in a way that we will explain. With an abuse of language, we

will continue to call the sheaf O(D) the line bundle associated with the divisor D.
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At this point it is important to make the following observation: all monomials χm have the

same charges under the (C∗)d−n described at the beginning of this section (in the following

these charges will be identified with the baryonic charges of the dual gauge theory). Indeed,

under the (C∗)d−n action we have:

χm →
d

∏

i=1

(µ<m,Q
(a)
i ni>+Q

(a)
i ci)x<m,ni>+ci

i = µ
Pd

i=1 Q
(a)
i ciχm (2.8)

where we have used equation (2.2). Similarly, all the sections have the same charge under

the discrete part of the group G. This fact has an important consequence. The generic

polynomial

f =
∑

amχm ∈ H0(VΣ,OVΣ
(D))

is not a function on VΣ, since it is not invariant under the (C∗)d−n action (and under

possible discrete orbifold actions). However, it makes perfectly sense to consider the zero

locus of f . Since all monomials in f have the same charge under (C∗)d−n, the equation

f = 0 is well defined on VΣ and defines a divisor.4

2.1 A simple example

After this general discussion, let us discuss an example to clarify the previous definitions.

Consider the toric variety P
2. The fan Σ for P

2 is generated by:

n1 = e1 n2 = e2 n3 = −e1 − e2 (2.9)

The three basic divisors Di correspond to {x1 = 0}, {x2 = 0}, {x3 = 0}, and they satisfy

the following relations (see equation (2.4)):

D1 − D3 = 0

D2 − D3 = 0

and hence D1 ∼ D2 ∼ D3 ∼ D. All line bundles on P
2 are then of the form O(nD) with an

integer n, and are usually denoted as O(n) → P
2. It is well known that the space of global

holomorphic sections of O(n) → P
2 is given by the homogeneous polynomial of degree n

for n ≥ 0, while it is empty for negative n. We can verify this statement using the general

construction with polytopes.

Consider the line bundle O(D1) associated with the divisor D1. In order to construct

its global sections we must first determine the polytope PD1 (c1 = 1, c2 = c3 = 0):

PD1 = {u1 > −1, u2 > 0, u1 + u2 6 0} (2.10)

Then, using (2.6), it easy to find the corresponding sections:

{x1, x2, x3} (2.11)

4In this way, we can set a map between linearly equivalent divisors and sections of the sheaf OVΣ
(D)

generalizing the usual map in the case of standard line bundles.
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u1
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x3 x1
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x1x1
x1

x1

x1

x1

x3x3

x2
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x2

x2

x3

x2

x3

x2 x3

x3

3

33

2

2

2

2

22

(a) (b)

Figure 2: (a) The polytope associated to the line bundle O(1) → P2. (b) The polytope associated

to the line bundle O(3) → P2.

These are the homogeneous monomials of order one over P
2. Indeed we have just con-

structed the line bundle O(1) → P
2 (see figure 2).

Consider as a second example the line bundle O(D1 + D2 + D3). In this case the

associated polytope is:

PD1+D2+D3 = {u1 > −1, u2 > −1, u1 + u2 6 1} (2.12)

Using (2.6) it is easy to find the corresponding sections:

{x3
1, x2

1x2, x1x2x3, . . .} (2.13)

These are all the homogeneous monomials of degree 3 over P
2; we have indeed constructed

the line bundle O(3) → P
2 (see figure 2).

The examples of polytopes and line bundles presented in this section are analogous

to the ones that we will use in the following to characterize the BPS baryonic operators.

The only difference (due to the fact that we are going to consider affine toric varieties) is

that the polytope PD will be a non-compact rational convex polyhedron, and the space of

sections will be infinite dimensional.

3. BPS D3 brane configurations

In this section we discuss Beasley’s prescription [39] for determining the BPS Hilbert space

corresponding to supersymmetric D3 brane configurations. We generalize the example of

the conifold presented in [39] to the case of a generic toric Calabi-Yau cone.
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3.1 Motivations

Consider the supersymmetric background of type IIB supergravity AdS5 × H with H a

Sasaki-Einstein manifold. This geometry is obtained by taking the near horizon geometry

of a stack of N D3 on the isolated Goreinstein singularity of a local Calabi-Yau three-fold

given by the real cone C(H) over the base H. The D3 branes fill the four dimensional

Minkowski space-time M4 in M4 × C(H).

The dual superconformal field theory is a quiver gauge theory: an N = 1 supersymmet-

ric quantum field theory with gauge group SU(N1)× . . . SU(Nk) and chiral superfields that

transform under the fundamental of a gauge group and the anti-fundamental of another

gauge group. Due to the presence of SU(N) type groups these theories have generically

baryonic like operators inside their spectrum and these are the objects we are interested

in.

Let us take the field theory dual to the conifold singularity as a basic example. The

theory has gauge group SU(N)×SU(N) and chiral superfields A1, A2 that transform under

the fundamental of the first gauge group and under the anti-fundamental of the second one,

and B1, B2 that transform under the conjugate representation. There exists also a non-

abelian global symmetry SU(2) × SU(2) under which the A fields transform as (2, 1) and

the B as (1, 2). The superpotential is W = ǫijǫpqAiBpAjBq. It is known that this theory

has one baryonic charge and that the Ai fields have charge one under this symmetry and

the Bi fields have charge minus one. Hence one can build the two basic baryonic operators:

ǫ1
p1,...,pN

ǫk1,...,kN

2 (Ai1)
p1

k1
. . . (AiN )pN

kN
= (det A)(i1,...,iN )

ǫ1
p1,...,pN

ǫk1,...,kN

2 (Bi1)
p1

k1
. . . (BiN )pN

kN
= (det B)(i1,...,iN ) (3.1)

These operators are clearly symmetric in the exchange of the Ai and Bi respectively, and

transform under (N +1, 1) and (1, N +1) representation of SU(2)×SU(2). The important

observation is that these are the baryonic operators with the smallest possible dimension:

∆det A,det B = N∆A,B. One can clearly construct operator charged under the baryonic

symmetry with bigger dimension in the following way. Defining the operators [46, 39]5

AI;J = Ai1Bj1 . . . AimBjmAim+1 (3.2)

the generic type A baryonic operator is:

ǫ1
p1,...,pN

ǫk1,...,kN

2 (AI1;J1)
p1

k1
. . . (AIN ;JN

)pN

kN
. (3.3)

One can clearly do the same with the type B operators.

Using the tensor relation

ǫα1...αN
ǫβ1...βN = δβ1

[α1
. . . δβN

αN ] , (3.4)

depending on the symmetry of (3.3), one can sometimes factorize the operator in a basic

baryon times operators that are neutral under the baryonic charge [46, 39]. It is a noto-

rious fact that the AdS/CFT correspondence maps the basic baryonic operators (3.1) to

5which are totally symmetric in the SU(2)×SU(2) indices due to the F-term relations AiBpAj = AjBpAi,

BpAiBq = BqAiBp.
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static D3 branes wrapping specific three cycles of T 1,1 and minimizing their volumes. The

volumes of the D3 branes are proportional to the dimension of the dual operators in CFT .

Intuitively, the geometric dual of an operator (3.3) is a fat brane wrapping a three cycle,

not necessarily of minimal volume, and moving in the T 1,1 geometry (we will give more

rigorous arguments below). If we accept this picture the factorizable operators in field

theory can be interpreted in the geometric side as the product of gravitons/giant gravitons

states with a static D3 brane wrapped on some cycle, and the non-factorisable ones are

interpreted as excitation states of the basic D3 branes or non-trivial brane configurations.

What we would like to do is to generalize this picture to a generic conical CY sin-

gularity. Using a clever parametrization of the possible D3 brane BPS configurations in

the geometry found in [38, 39], we will explain how it is possible to characterize all the

baryonic operators in the dual SCFT , count them according to their charges and extract

geometric information regarding the cycles.

3.2 Supersymmetric D3 brane configurations

Consider supersymmetric D3 branes wrapping three-cycles in H. There exists a general

characterization of these types of configurations [38, 39] that relates the D3-branes wrapped

on H to holomorphic four cycles in C(H). The argument goes as follows. Consider the

euclidean theory on R
4×C(H). It is well known that one D3-brane wrapping a holomorphic

surface S in C(H) preserves supersymmetry. If we put N D3-branes on the tip of the cone

C(H) and take the near horizon limit the supergravity background becomes Y5×H where Y5

is the euclidean version of AdS5. We assume that S intersects H in some three-dimensional

cycle C3. The BPS D3 brane wrapped on S looks like a point in R
4 and like a line in Y5: it

becomes a brane wrapped on a four-dimensional manifold in γ×H where γ is the geodesic

in Y5 obtained from the radial direction in C(H). Using the SO(5, 1) global symmetry of

Y5 we can rotate γ into any other geodesic in Y5. For this reason when we make the Wick

rotation to return to Minkowski signature (this procedure preserves supersymmetry) we

may assume that γ becomes a time-like geodesic in AdS5 spacetime. In this way we have

produced a supersymmetric D3 brane wrapped on a three cycle in H which moves along

γ in AdS5. Using the same argument in the opposite direction, we realize also that any

supersymmetric D3 brane wrapped on H can be lifted to a holomorphic surface S in C(H).

Due to this characterization, we can easily parametrize the classical phase space Mcl

of supersymmetric D3 brane using the space of holomorphic surfaces in C(H) without

knowing the explicit metric on the Sasaki-Einstein space H (which is generically unknown!).

The previous construction characterizes all kind of supersymmetric configurations of

wrapped D3 branes. These include branes wrapping trivial cycles and stabilized by the

combined action of the rotation and the RR flux, which are called giant gravitons in the

literature [36]. Except for a brief comment on the relation between giant gravitons and

dual giant gravitons, we will be mostly interested in D3 branes wrapping non trivial cycles.

These correspond to states with non zero baryonic charges in the dual field theory. The

corresponding surface D in C(H) is then a non trivial divisor, which, modulo subtleties in

– 9 –
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the definition of the sheaf O(D), can be written as the zero locus of a section of O(D)

χ = 0 χ ∈ H0(X,O(D)) (3.5)

3.2.1 The toric case

The previous discussion was general for arbitrary Calabi-Yau cones C(H). From now on

we will mostly restrict to the case of an affine toric Calabi-Yau cone C(H). For this type

of toric manifolds the fan Σ described in section 2 is just a single cone σ, due to the fact

that we are considering a singular affine variety. Moreover, the Calabi-Yau nature of the

singularity requires that all the generators of the one dimensional cone in Σ(1) lie on a

plane; this is the case, for example, of the conifold pictured in figure 1. We can then

characterize the variety with the convex hull of a fixed number of integer points in the

plane: the toric diagram (figure 3). For toric varieties, the equation for the D3 brane

configuration can be written quite explicitly using homogeneous coordinates. As explained

in section 2, we can associate to every vertex of the toric diagram a global homogeneous

coordinate xi. Consider a divisor D =
∑

ciDi. All the supersymmetric configurations of

D3 branes corresponding to surfaces linearly equivalent to D can be written as the zero

locus of the generic section of H0(VΣ,OVΣ
(D))

P (x1, x2, . . . , xd) ≡
∑

m∈PD∩M

hmχm = 0 (3.6)

As discussed in section 2, the sections take the form of the monomials (2.6)

χm =

d
∏

i=1

x<m,ni>+ci

i

and there is one such monomial for each integer point m ∈ M in the polytope PD associated

with D as in equation (2.5)

{u ∈ MR| < u, ni > ≥ − ci , ∀i ∈ Σ(1)}

As already noticed, the xi are only defined up to the rescaling (2.3) but the equation

P (x1, . . . xd) = 0 makes sense since all monomials have the same charge under (C∗)d−3 (and

under possible discrete orbifold actions). Equation (3.6) generalizes the familiar description

of hypersurfaces in projective spaces P
n as zero locus of homogeneous polynomials. In our

case, since we are considering affine varieties, the polytope PD is non-compact and the

space of holomorphic global sections is infinite dimensional.

We are interested in characterizing the generic supersymmetric D3 brane configuration

with a fixed baryonic charge. We must therefore understand the relation between divisors

and baryonic charges: it turns out that there is a one-to one correspondence between

baryonic charges and classes of divisors modulo the equivalence relation (2.4).6 We will

understand this point by analyzing in more detail the (C∗)d−3 action defined in section 2.

6In a fancy mathematical way, we could say that the baryonic charges of a D3 brane configuration are

given by an element of the Chow group A2(C(H)).
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3.2.2 The assignment of charges

To understand the relation between divisors and baryonic charges, we must make a digres-

sion and recall how one can assign U(1) global charges to the homogeneous coordinates

associated to a given toric diagram [10, 12, 19, 20].

Non-anomalous U(1) symmetries play a very important role in the dual gauge theory

and it turns out that we can easily parametrize these global symmetries directly from the

toric diagram. In a sense, we can associate field theory charges directly to the homogeneous

coordinates.

For a background with horizon H, we expect d− 1 global non-anomalous symmetries,

where d is number of vertices of the toric diagram.7 We can count these symmetries by

looking at the number of massless vectors in the AdS dual. Since the manifold is toric,

the metric has three isometries U(1)3 ≡ T 3, which are the real part of the (C∗)3 algebraic

torus action. One of these, generated by the Reeb vector, corresponds to the R-symmetry

while the other two give two global flavor symmetries in the gauge theory. Other gauge

fields in AdS come from the reduction of the RR four form on the non-trivial three-cycles

in the horizon manifold H, and there are d − 3 three-cycles in homology [12]. On the

field theory side, these gauge fields correspond to baryonic symmetries. Summarizing, the

global non-anomalous symmetries are:

U(1)d−1 = U(1)2F × U(1)d−3
B (3.7)

In this paper we use the fact that these d − 1 global non-anomalous charges can be

parametrized by d parameters a1, a2, . . . , ad, each associated with a vertex of the toric

diagram (or a point along an edge), satisfying the constraint:

d
∑

i=1

ai = 0 (3.8)

The d − 3 baryonic charges are those satisfying the further constraint [12]:

d
∑

i=1

aini = 0 (3.9)

where ni are the vectors of the fan: ni = (yi, zi, 1) with (yi, zi) the coordinates of integer

points along the perimeter of the toric diagram. The R-symmetries are parametrized with

the ai in a similar way of the other non-baryonic global symmetry, but they satisfy the

different constraint
d

∑

i=1

ai = 2 (3.10)

due to the fact that the terms in the superpotential must have R-charges equal to two.

7More precisely, d is the number of integer points along the perimeter of the toric diagram. Smooth

horizons have no integer points along the sides of the toric diagram except the vertices, and d coincides with

the number of vertices. Non smooth horizons have sides passing through integer points and these must be

counted in the number d.
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Figure 3: A generic toric diagram with the associated trial charges ai, homogeneous coordinates

xi and divisors Di.

Now that we have assigned trial charges to the vertices of a toric diagram and hence

to the homogeneous coordinates xi, we can return to the main problem of identifying

supersymmetric D3 branes with fixed baryonic charge. Comparing equation (2.2) with

equation (3.9), we realize that the baryonic charges ai in the dual field theory are the

charges Q
(a)
i of the action of (C∗)d−3 on the homogeneous coordinates xi. We can now

assign a baryonic charge to each monomials made with the homogeneous coordinates xi. All

terms in the equation (3.6) corresponding to a D3 brane wrapped on D are global sections

χm of the line bundle O(
∑d

i=1 ciDi) and they have all the same d − 3 baryonic charges

Ba =
∑d

i=1 Q
(a)
i ci; these are determined only in terms of the ci defining the corresponding

line bundle (see equation (2.8)).

Using this fact we can associate a divisor in C(H) to every set of d−3 baryonic charges.

The procedure is as follows. Once we have chosen a specific set of baryonic charges Ba

we determine the corresponding ci using the relation Ba =
∑d

i=1 ciQ
(a)
i . These coefficients

define a divisor D =
∑d

i=1 ciDi. It is important to observe that, due to equation (2.2),

the ci are defined only modulo the equivalence relation ci ∼ ci+ < m,ni > corresponding

to the fact that the line bundle O(
∑d

i=1 ciDi) is identified only modulo the equivalence

relations (2.4) D ∼ D +
∑d

i=1 < m,ni > Di. We conclude that baryonic charges are in

one-to-one relation with divisors modulo linear equivalence.

For simplicity, we only considered continuous baryonic charges. In the case of varieties

which are orbifolds, the group G in equation (2.1) contains a discrete part. In the orbifold

case, the quantum field theory contains baryonic operators with discrete charges. This case

can be easily incorporated in our formalism.

3.2.3 The quantization procedure

Now we want to quantize the classical phase space Mcl using geometric quantization [47]

following [39].

Considering that P and λP with λ ∈ C
∗ vanish on the same locus in C(H), it easy
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to understand that the various distinct surfaces in C(H) correspond to a specific set of

hm with m ∈ PD ∩ M modulo the equivalence relation hm ∼ λhm: this is a point in the

infinite dimensional space CP
∞ in which the hm are the homogeneous coordinates. Thus

we identify the classical configurations space Mcl of supersymmetric D3 brane associated

to a specific line bundle O(D) as CP
∞ with homogeneous coordinates hm. A heuristic way

to understand the geometric quantization is the following. We can think of the D3 brane

as a particle moving in Mcl and we can associate to it a wave function Ψ taking values

in some holomorphic line bundle L over CP
∞. The reader should not confuse the line

bundle L, over the classical phase space Mcl of wrapped D3 branes, with the lines bundles

O(D), which are defined on C(H). Since all the line bundles L over a projective space are

determined by their degree (i.e. they are of the form O(α)) we have only to find the value

of α. This corresponds to the phase picked up by the wavefunction Ψ when the D3 brane

goes around a closed path in Mcl. Moving in the phase space Mcl corresponds to moving

the D3 brane in H. Remembering that a D3 brane couples to the four form field C4 of

the supergravity and that the backgrounds we are considering are such that
∫

H F5 = N ,

it was argued in [39] that the wavefunction Ψ picks up the phase e2πiN and α = N . For

this reason L = O(N) and the global holomorphic sections of this line bundle over CP
∞

are the degree N polynomials in the homogeneous coordinates hm.

Since the BPS wavefunctions are the global holomorphic sections of L, we have that

the BPS Hilbert space HD is spanned by the states:

|hm1 , hm2 , . . . , hmN
> (3.11)

This is Beasley’s prescription.

We will make a correspondence in the following between hm and certain operators in

the field theory with one (or more) couple of free gauge indices

hm , (Om)αβ (or (Om)α1β1...αkβk
) (3.12)

where the Om are operators with fixed baryonic charge. The generic state in this sector

|hm1 , hm2 , . . . , hmN
> will be identify with a gauge invariant operator obtained by contract-

ing the Om with one (or more) epsilon symbols. The explicit example of the conifold is

discussed in details in [39]: the homogeneous coordinates with charges (1,−1, 1,−1) can be

put in one-to-one correspondence with the elementary fields (A1, B1, A2, B2) which have

indeed baryonic charge (1,−1, 1,−1). The use of the divisor D1 (modulo linear equiva-

lence) allows to study the BPS states with baryonic charge +1. It is easy to recognize

that the operators AI,J in equation (3.2) have baryonic charge +1 and are in one-to-one

correspondence with the sections of O(D1)

∑

m∈PD1
∩M

hmχm = h1x1 + h3x3 + · · ·

The BPS states |hm1 , hm2 , . . . , hmN
> are then realized as all the possible determinants, as

in equation (3.3).
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3.3 Comments on the relation between giant gravitons and dual giant gravitons

Among the O(D) line bundles there is a special one: the bundle of holomorphic functions

O.8 It corresponds to the supersymmetric D3 brane configurations wrapped on homologi-

cally trivial three cycles C3 in H (also called giant gravitons [36]).

When discussing trivial cycles, we can parameterize holomorphic surfaces just by using

the embedding coordinates.9 Our discussion here can be completely general and not re-

stricted to the toric case. Consider the general Calabi-Yau algebraic affine varieties V that

are cone over some compact base H (they admit at least a C
∗ action V = C(H)). These

varieties are the zero locus of a collection of polynomials in some C
k space. We will call

the coordinates of the C
k the embedding coordinates zj, with j = 1, . . . , k. The coordinate

rings C[V ] of the varieties V are the restriction of the polynomials in C
k of arbitrary degree

on the variety V :

C[V ] =
C[z1, . . . zk]

{p1, . . . , pl}
=

C[z1, . . . zk]

I[V ]
(3.13)

where C[z1, . . . , zk] is the C-algebra of polynomials in k variables and pj are the defining

equations of the variety V . We are going to consider the completion of the coordinate ring

(potentially infinity polynomials) whose generic element can be written as the (infinite)

polynomial in C
k

P (z1, . . . zk) = c + cizi + cijzizj + · · · =
∑

I

cIzI (3.14)

restricted by the algebraic relations {p1 = 0, . . . , pl = 0}.10

At this point Beasley’s prescription says that the BPS Hilbert space of the giant

gravitons Hg is spanned by the states

|cI1 , cI2 , . . . , cIN
> (3.15)

These states are holomorphic polynomials of degree N over Mcl and are obviously sym-

metric in the cIi
. For this reason we may represent (3.15) as the symmetric product:

Sym(|cI1 > ⊗|cI2 > ⊗ . . . ⊗ |cIN
>) (3.16)

Every element |cIi
> of the symmetric product is a state that represents a holomorphic

function over the variety C(H). This is easy to understand if one takes the polynomial

P (z1, . . . zk) and consider the relations among the cI induced by the radical ring I[V ] (in

8Clearly there are other line bundles equivalent to O. For example, since we are considering Calabi-Yau

spaces, the canonical divisor K = −
Pd

i=1 Di is always trivial and O ∼ O(
Pd

i=1 Di).
9These can be also expressed as specific polynomials in the homogeneous coordinates such as that their

total baryonic charges are zero.
10There exist a difference between the generic baryonic surface and the mesonic one: the constant c. The

presence of this constant term is necessary to represent the giant gravitons, but if we take for example

the constant polynomial P = c this of course does not intersect the base H and does not represent a

supersymmetric D3 brane. However it seems that this is not a difficulty for the quantization procedure [39,

32]
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a sense one has to quotient by the relations generated by {p1 = 0, . . . , pl = 0}). For this

reason the Hilbert space of giant gravitons is:

Hg =

N Sym
⊗

OC(H) (3.17)

Obviously, we could have obtained the same result in the toric case by applying the tech-

niques discussed in this section. Indeed if we put all the ci equal to zero the polytope

PD reduces to the dual cone C∗ of the toric diagram, whose integer points corresponds to

holomorphic functions on C(H) [35].

In a recent work [34] it was shown that the Hilbert space of a dual giant graviton11 Hdg

in the background space AdS5 × H, where H is a generic Sasaki-Einstein manifold, is the

space of holomorphic functions over the cone C(H). At this point it is easy to understand

why the counting of 1/2 BPS states of giant gravitons and dual giant gravitons give the

same result [32, 31]: the counting of 1/2 BPS mesonic state in field theory. Indeed:

Hg =

N Sym
⊗

Hdg (3.18)

4. Flavor charges of the BPS baryons

In the previous section, we discussed supersymmetric D3 brane configurations with specific

baryonic charge. Now we would like to count, in a sector with given baryonic charge, the

states with a given set of flavor charges U(1) × U(1) and R-charge U(1)R. The generic

state of the BPS Hilbert space (3.11) is, by construction, a symmetric product of the

single states |hm >. These are in a one to one correspondence with the integer points in

the polytope PD, which correspond to sections χm. As familiar in toric geometry [44, 43],

a integer point m ∈ M contains information about the charges of the T 3 torus action, or,

in quantum field theory language, about the flavor and R charges.

Now it is important to realize that, as already explained in section 3, the charges

ai that we can assign to the homogeneous coordinates xi contain information about the

baryonic charges (we have already taken care of them) but also about the flavor and R

charges in the dual field theory. If we call fk
i with k = 1, 2 the two flavor charges and Ri

the R-charge, the section χm has flavor charges (compare equation (2.6)):

fk
m =

d
∑

i=1

(< m,ni > +ci)f
k
i (4.1)

and R-charge:

Rm =

d
∑

i=1

(< m,ni > +ci)Ri (4.2)

It is possible to refine the last formula. Indeed the Ri, which are the R-charges of a set

of elementary fields of the gauge theory [12, 19],12 are completely determined by the Reeb

11A dual giant graviton is a D3 brane wrapped on a three-sphere in AdS5
12The generic elementary field in the gauge theory has an R-charge which is a linear combination of the

Ri [19].
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vector of H and the vectors ni defining the toric diagram [17]. Moreover, it is possible to

show that
∑d

i=1 niRi = 2
3b [19], where b specifies how the Reeb vector lies inside the T 3

toric fibration. Hence:

Rm =
2

3
< m, b > +

d
∑

i=1

ciRi (4.3)

This formula generalizes an analogous one for mesonic operators [28]. Indeed if we put all

the ci equal to zero the polytope PD reduces to the dual cone C∗ of the toric diagram [35].

We know that the elements of the mesonic chiral ring of the CFT correspond to integer

points in this cone and they have R-charge equal to 2
3 < m, b >. In the case of generic

ci, the right most factor of (4.3) is in a sense the background R charge: the R charge

associated to the fields carrying the non-trivial baryonic charges. In the simple example of

the conifold discussed in subsection 3.1, formula (4.3) applies to the operators (3.2) where

the presence of an extra factor of A takes into account the background charge. In general

the R charge (4.3) is really what we expect from an operator in field theory that is given

by elementary fields with some baryonic charges dressed by “mesonic insertions”.

The generic baryonic configuration is constructed by specifying N integer points mρ

in the polytope PD. Its R charge RB is

RB =
2

3

N
∑

ρ=1

< mρ, b > +N
d

∑

i=1

ciRi (4.4)

This baryon has N times the baryonic charges of the associated polytope. Recalling that at

the superconformal fixed point dimension ∆ and R-charge of a chiral superfield are related

by R = 2∆/3, it is easy to realize that the equation (4.4) is really what is expected for a

baryonic object in the dual superconformal field theory. Indeed if we put all the mρ equal

to zero we have (this means that we are putting to zero all the mesonic insertions)

∆B = N

d
∑

i=1

ci∆i (4.5)

This formula can be interpreted as follows. The elementary divisor Di can be associated

with (typically more than one) elementary field in the gauge theory, with R charge Ri. By

taking just one of the ci different from zero in formula (4.5), we obtain the dimension of a

baryonic operator in the dual field theory: take a fixed field, compute its determinant and

the dimension of the operator is N times the dimension of the individual fields. These field

operators correspond to D3 branes wrapped on the basic divisors Di and are static branes

in the AdS5 ×H background.13 They wrap the three cycles Ci
3 obtained by restricting the

elementary divisors Di at r = 1. One can also write the Ri in terms of the volume of the

13The generic configuration of a D3 brane wrapped on a three cycle C3 in H is given by a holomorphic

section of O(D) that is a non-homogeneous polynomial under the R-charge action. For this reason, and

holomorphicity, it moves around the orbits of the Reeb vector [38, 39]. Instead the configuration corre-

sponding to the basic baryons is given by the zero locus of a homogeneous monomial (therefore, as surface,

invariant under the R-charge action), and for this reason it is static.
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Sasaki-Einstein space H and of the volume of Ci
3 [4]:

Ri =
πVol(Ci

3)

3Vol(H)
(4.6)

Configurations with more than one non-zero ci in equation (4.5) correspond to basic baryons

made with elementary fields whose R-charge is a linear combination of the Ri (see [19]) or

just the product of basic baryons.

The generic baryonic configuration has N times the R-charge and the global charges

of the basic baryons (static branes which minimize the volume in a given homology class)

plus the charges given by the fattening and the motion of the three cycle inside the ge-

ometry (the mesonic fluctuations on the D3 brane or “mesonic insertions” in the basic

baryonic operators in field theory). It is important to notice that the BPS operators do

not necessarily factorize in a product of basic baryons times mesons.14

4.1 Setting the counting problem

In section 6 we will count the baryonic states of the theory with given baryonic charges

(polytope PD) according to their R and flavor charges. Right now we understand the space

of classical supersymmetric D3 brane configurations N as a direct sum of holomorphic line

bundles over the variety C(H):

N =
⊕

ci∼ci+<m,ni>

O
(

d
∑

i

ciDi

)

(4.7)

where the ci specify the baryonic charges. We have just decomposed the space N into

sectors according to the grading given by the baryonic symmetry. Geometrically, this is

just the decomposition of the homogeneous coordinate ring of the toric variety under the

grading given by the action of (C∗)d−3. Now, we want to introduce a further grading.

Inside every line bundle there are configurations with different flavor and R charges.

Once specified the baryonic charges, the Hilbert space of BPS operators is the N order

symmetric product of the corresponding line bundle. Hence the 1/2 BPS Hilbert space is

also decomposed as:

H =
⊕

ci∼ci+<m,ni>

HD (4.8)

We would like to count the baryonic operators of the dual SCFT with a given set of flavor

and R charges. We can divide this procedure into three steps:

• find a way to count the global sections of a given holomorphic line bundle (a baryonic

partition function ZD);

14In the simple case of the conifold this is due to the presence of two fields Ai with the same gauge indices;

only baryons symmetrized in the indices i factorize [46, 39]. In more general toric quiver gauge theories it

is possible to find different strings of elementary fields with the same baryonic charge connecting a given

pair of gauge groups; their existence prevents the generic baryons from being factorizable.
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• write the total partition function for the N -times symmetric product of the polytope

PD (the partition function ZD,N). This corresponds to find how many combinations

there are with the same global charges ak
B (with k = 1, 2 for the flavor charges and

k = 3 for the R charge ) for a given baryonic state: the possible set of mρ such that:

ak
B − N

d
∑

i=1

cia
k
i =

∑

mρ∈PD∩M

d
∑

i=1

< mρ, ni > ak
i . (4.9)

• write the complete BPS partition function of the field theory by summing over all

sectors with different baryonic charges. Eventually we would also like to write the

complete BPS partition function of the field theory including all the d charges at a

time: d − 3 baryonic, 2 flavor and 1 R charges [42].

In the following sections, we will solve completely the first two steps. The third step is

complicated by various facts. First of all the correspondence between the homogeneous

coordinates and fields carrying the same U(1) charges is not one to one. From the gravity

side of the AdS/CFT correspondence one can explain this fact as follow [12]. The open

strings attached to a D3 brane wrapped on the non-trivial three cycles corresponding to the

basic baryons in the dual field theory have in general many supersymmetric vacuum states.

This multiplicity of vacua corresponds to the fact that generically the first homotopy group

of the three cycles π1(C3) is non-trivial and one can turn on a locally flat connection with

non-trivial Wilson lines. The different Wilson lines give the different open string vacua

and these are associated with different elementary fields Xij (giving rise to basic baryons

det Xij with the same global charges). One has then to include non trivial multiplicities

for the ZD,N when computing the complete BPS partition function. Moreover one should

pay particular attention to the sectors with higher baryonic charge. All these issues and

the determination of the partition function depending on all the d charges will be discussed

in forthcoming publications [42].

5. Comparison with the field theory side

At this point it is probably worthwhile to make a more straight contact with the field

theory. This is possible at least for all toric CY because the dual quiver gauge theory is

known [16, 21, 22]. In this paper we will mainly focus on the partition function ZD for

supersymmetric D3 brane configurations. In forthcoming papers [42] we will show how to

compute the partition function for the chiral ring and how to compare with the full set

of BPS gauge invariant operators. In this section we show that, for a selected class of

polytopes PD, there is a simple correspondence between sections of the line bundle D and

operators in the gauge theory.

The gauge theory dual to a given toric singularity is completely identified by the dimer

configuration, or brane tiling (figure 4) [16, 21, 22]. This is a bipartite graph drawn on

a torus T 2: it has an equal number of white and black vertices and links connect only

vertices of different colors. In the dimer the faces represent SU(N) gauge groups, oriented
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Figure 4: (1) Dimer configuration for the field theory dual to C(Y 2,1) with a given assignment of

charges ai and the orientation given by the arrows connecting the gauge groups. We have drawn in

green the bounds of the basic cell. For notational simplicity we have not indicated with different

colors the vertices; the dimer is a bipartite graph and this determines an orientation. (2) Toric

diagram for the singularity C(Y 2,1).

links represent chiral bifundamental multiplets and nodes represent the superpotential: the

trace of the product of chiral fields around a node gives a superpotential term with sign

+ or - according to whether the vertex is a white one or a black one. By applying Seiberg

dualities to a quiver gauge theory we can obtain different quivers that flow in the IR to

the same CFT: to a toric diagram we can associate different quivers/dimers describing the

same physics. It turns out that one can always find phases where all the gauge groups have

the same number of colors; these are called toric phases. Seiberg dualities keep constant

the number of gauge groups F , but may change the number of fields E, and therefore the

number of superpotential terms V = E − F . The toric phases having the minimal set of

fields are called minimal toric phases.

There is a general recipe for assigning baryonic, flavors and R charges to the elementary

fields for a minimal toric phase of the CFT [10, 12, 19, 20]. As described in section (3.2.2),

we can parameterize all charges with d numbers ai, i = 1, . . . , d associated with the vertices

of the toric diagram subject to the constraint (3.8) in case of global symmetries and (3.10)

in case of R symmetries. Every elementary field can be associated with a brane wrapping

a particular divisor

Di+1 + Di+2 + · · ·Dj (5.1)
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and has charge ai+1 + ai+2 + · · · aj.
15 Various fields have the same charge; as mentioned

in the last part of the section 4, this multiplicity is due to the non-trivial homotopy of the

corresponding cycles. Explicit methods for computing the charge of each link in the dimer

are given in [12, 19]. The specific example of H = Y 2,1 is reported in figure 4.

With this machinery in our hands we can analyze the the field theory operators cor-

responding to the D3 brane states analyzed in the previous sections. The first thing to

understand is the map between the section χm of the line bundle we are considering and the

field theory operators. The case of the trivial line bundle is well known: the corresponding

polytope is the cone of holomorphic functions which are in one-to-one correspondence with

mesonic operators. The latter are just closed loops in the quiver. It is possible to construct

a map between closed loops in the quiver and points in the cone of holomorphic functions;

it can be shown that closed loops mapped to the same point in the cone correspond to

mesons that are F -term equivalent [49, 48].

We would like to do the same with open paths in the dimer. In particular we would

like to associate to every point in the polytope PD a sequence of contractions of elementary

fields modulo F -term equivalence. This is indeed possible for a particular class of polytopes

which we now describe.

Let us start by studying open paths in the dimer. Take two gauge group U , V in the

dimer and draw an oriented path P connecting them (an oriented path in the dimer is a

sequence of chiral fields oriented in the same way and with the gauge indices contracted

along the path). The global charges of P is the sum of the charges of the fields contained

in P and can be schematically written as:

d
∑

i=1

ciai (5.2)

with some integers ci. Draw another oriented path Q connecting the same gauge groups.

Consider now the closed non-oriented path Q − P ; as explained in [48] the charges for a

generic non-oriented closed path can be written as:16

d
∑

i=1

< m,ni > ai (5.3)

with m a three dimensional integer vector. Hence the charges for a generic path Q con-

necting two gauge groups are:

d
∑

i=1

(< m,ni > +ci)ai . (5.4)

15Call C the set of all the unordered pairs of vectors in the (p, q) web (the (p, q) web is the set of vectors

vi perpendicular to the edges of the toric diagram and with the same length as the corresponding edge);

label an element of C with the ordered indexes (i, j), with the convention that the vector vi can be rotated

to vj in the counter-clockwise direction with an angle ≤ 180o. With our conventions |〈vi, vj〉| = 〈vi, vj〉,

where with 〈 , 〉 we mean the determinant of the 2×2 matrix. One can associate with any element of C the

divisor Di+1 +Di+2 + · · ·Dj and a type of chiral field in the field theory with multiplicity 〈vi, vj〉 and global

charge equal to ai+1 + ai+2 + · · · aj [19]. The indexes i, j are always understood to be defined modulo d.
16For non-oriented paths one has to sum the charges of the fields with the same orientation and subtract

the charges of the fields with the opposite orientation.
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Because the path Q is oriented we have just added the charges along it and the coefficients

of the ai are all positive:

< m,ni > +ci > 0 . (5.5)

We have the freedom to change P ; this means that the ci are only defined up to the

equivalence relation ci ∼ ci+ < m,ni >. Observe that (5.5) is the same condition on the

exponents for the homogeneous coordinates xi in the global sections χm (2.5), and the

equivalence relation ci ∼ ci+ < m,ni > corresponds to the equivalence relation on the

divisors D ∼ D +
∑d

i=1 < m,ni > Di. Hence we realize that to every path connecting

a pair of gauge groups we can assign a point in a polytope associated with the divisor
∑

i ciDi modulo linear equivalence. In particular, all operators associated with open paths

between two gauge groups (U, V ) have the same baryonic charge, as it can be independently

checked.

Now that we have a concrete map between the paths in the dimer and the integer

points in the polytope we have to show that this map is well defined. Namely we have

to show that we map F -term equivalent operators to the same point in the polytope and

that to a point in the polytope corresponds only one operator in field theory modulo F

terms relations (the injectivity of the map). The first step is easy to demonstrate: paths

that are F -term equivalents have the same set of U(1) charges and are mapped to the

same point m in the polytope PD. Conversely if paths connecting two gauge groups are

mapped to the same point m it means that they have the same global charges. The path

P − P ′ is then a closed unoriented path with charge 0. As shown in [49, 48] P and P ′ are

then homotopically equivalent.17 Now we can use the Lemma 5.3.1 in [49] that says: “in a

consistent tiling, paths with the same R-charge are F -term equivalent if and only if they

are homotopic” to conclude that paths mapped to the same point m in PD are F -term

equivalent. Surjectivity of the map is more difficult to prove, exactly as in the case of

closed loops [49, 48], but it is expected to hold in all relevant cases.

In particular we will apply the previous discussion to the case of neighbouring gauge

groups (U, V ) connected by one elementary field. If the charge of the field is ai+1 + · · ·+aj

we are dealing with the sections of the line bundle O(Di+1 + · · · + Dj)

∑

m∈PDi+1+···+Dj

hmχm = hxi+1 . . . xj + · · ·

The section xi+1 . . . xj will correspond to the elementary field itself while all other sections

χmj will correspond to operators with two free gauge indices (Om)αβ under U and V which

correspond to open paths from U to V . The proposal for finding the gauge invariant

operator dual to the BPS state |hm1 , . . . , hmN
> is then the following.18 We associate to

every hmj
, with section χmj , an operator in field theory with two free gauge indices in the

way we have just described (from now on we will call these paths the building blocks of

the baryons). Then we construct a gauge invariant operator by contracting all the N free

17Indeed it is possible to show that m1 and m2 of a closed path are its homotopy numbers around the

dimer.
18This is just a simple generalization of the one in [39].
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indices of one gauge group with its epsilon tensor and all the N free indices of the other

gauge group with its own epsilon. The field theory operator we have just constructed has

clearly the same global charges of the corresponding state in the string theory side and due

to the epsilon contractions is symmetric in the permutation of the field theory building

blocks like the string theory state. This generalizes Equation (3.3) to the case of a generic

field in a toric quiver. By abuse of language, we can say that we have considered all the

single determinants that we can make with indices in (U, V ).

As already mentioned, D3 branes wrapped on three cycles in H come with a multiplicity

which is given by the non trivial homotopy of the three cycle. On the field theory side, this

corresponds to the fact there is a multiplicity of elementary fields with the same charge.

Therefore a polytope PD is generically associated to various different pairs of gauge groups

(Ua, V a), a = 1, . . . #D. For this reason we say that the polytope PD has a multiplicity

#D. This implies that there is an isomorphism between the set of open paths (modulo F -

terms) connecting the different pairs (Ua, V a). Similarly, the single determinant baryonic

operators constructed as above from different pairs (Ua, V a) come isomorphically from the

point of view of the counting problem.

Obviously, the baryonic operators we have constructed are just a subset of the chiral

ring of the toric quiver gauge theory. They correspond to possible single determinants that

we can construct. In the case of greater baryonic charge (products of determinants) the

relation between points in the polytope PD and operators is less manifest and it will be

discussed in section 5.2.

As an example of this construction, we now discuss the baryonic building blocks asso-

ciated with a line bundle over the Calabi-Yau cone C(Y 2,1).

5.1 Building blocks for O(D3) → C(Y 2,1)

Let us explain the map between the homogeneous coordinates and field theory operators

in a simple example: C(Y 2,1). The cone over Y 2,1 has four divisors with three equivalence

relations (see figure 4) and hence we have the assignment:

D1 = 3D D2 = −2D D3 = D D4 = −2D (5.6)

We want to construct the building blocks of the BPS operators with baryonic charge equal

to one. Because the (C∗)d−3 = C
∗ action is specified by the charge:

Q = (+3,−2,+1,−2) (5.7)

we choose c3 = 1 and c1 = c2 = c4 = 0. Hence:

PD3 = {mǫM |m1 + m3 ≥ 0,m2 + m3 ≥ 0,−m1 + m3 ≥ −1,m1 − m2 + m3 ≥ 0} (5.8)

We can now easily construct the sections of the corresponding line bundle O(D3) and try

to match these with the BPS operators, which are just the open paths in the dimer (see

figure 4) with the same trial charges ai of the polynomial in the homogeneous variables.

Looking at the dimer of Y 2,1 we immediately realize that there are three distinct pairs of

gauge groups with charge
∑d

i=1 ciai = a3: (2, 1), (4, 2), (1, 3). Hence the multiplicity of
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(m1,m2,m3) sections charges (2, 1) (4, 2) (1, 3)

(0,0,0) x3 a3 Xdl
21 = Y Xdl

42 = Y Xdl
13 = Y

(1,0,0) x1x4 a1 + a4 Xdr
21 = V Xur

43 Xdr
32 = ZU Xdr

14Xur
43 = UZ

(1,1,0) x1x2 a1 + a2 Xu
21 = V Xur

43 Xu
32 = ZU Xu

14X
ur
43 = UZ

(-1,0,1) x2x
3
3 a2 + 3a3 Xdl

21X
u
14X

dl
42X

dl
21 Xdl

42X
dl
21X

u
14X

dl
42 Xdl

13X
u
32X

dl
21X

dl
13

= Y UY Y = Y Y UY = Y UY Y

(-1,-1,1) x3
3x4 3a3 + a4 Xdl

21X
dl
13X

dr
32Xdl

21 Xdl
42X

dl
21X

dr
14Xdl

42 Xdl
13X

dr
32Xdl

21X
dl
13

= Y Y UY = Y Y UY = Y UY Y

. . . . . . . . . . . . . . . . . .

Table 1: Few sections of O(D3) and the corresponding field theory operators of baryon number

1. We write: the point m in the polytope; the corresponding section (xi are the homogeneous

coordinates ); its charges; the three corresponding gauge operators (X are the fundamental fields):

we used the label u, l, d, r for up, left, down, right, to specify the field direction and, for comparison

with the literature, the field is also written using the notations commonly adopted for Y p,q [9].

PD3 is #D3 = 3 and for every point in the polytope we have three different operators in the

field theory side, corresponding to paths in the dimer connecting the three different pairs

of gauge groups. In table 1 we match the sections in the geometry side with the operators

in the field theory side for few points in the polytope PD3 .

One can observe, by looking at the dimer (figure 4), that in the fourth and fifth lines

of table 1 one can assign different operators to the same section, but it is easy to check

that these are related by F -term equations. Hence in this simple case the correspondence

between geometry and field theory is manifest.

The gauge invariant operators with baryonic charge N are obtained by taking all the

operators connecting the same gauge groups and by contracting the N free indices of one

gauge group with its epsilon and the N free indices of the other gauge group with its own

epsilon. All operators come in triples with the same quantum numbers.

5.2 Comments on the general correspondence

In the case of a generic polytope PD, not associated with elementary fields, the correspon-

dence between sections of the line bundle O(D) and operators is less manifest. The reason

is that we are dealing with higher baryonic charges and the corresponding gauge invariant

operators are generically products of determinants.

Let us consider as an example the case of the conifold. Suppose we want to study

the polytope P2D1 which corresponds to classify the BPS operators with baryonic charges

equal to 2N . In field theory we certainly have baryonic operators with charge 2N , for

example det A1 · detA1. Clearly all the products of two baryonic operators with baryon

number N give a baryonic operator with baryon number 2N . In a sense in the conifold

all the operators in sectors with baryonic charge with absolute value bigger than one are

factorized [46, 39]. However we cannot find a simple prescription for relating sections of

P2D1 to paths in the dimer. Certainly we can not find a single path in the dimer (figure 5)

connecting the two gauge groups with charge 2a1.
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(2)

1

21

2
a1

a2

a3

a4

a1

a4

a3

a2

a4a2

a1 a3

a1 a2

a3a4

A 1 B1

A 2B2

(1)

Figure 5: (1) Dimer configuration for the field theory dual to C(T 1,1) with a given assignment

of charges ai and the orientation given by the arrows linking the gauge groups. We have drawn in

green the bounds of the basic cell. (2) Toric diagram for the singularity C(T 1,1).

One could speculate that the prescription valid for basic polytopes has to be generalized

by allowing the use of paths and multipaths. For example, to the section χm in the polytope

P2D1 for the conifold we could assign two paths connecting the two gauge groups with

charges
∑d

i=1 < m(1), ni > +a1 and
∑d

i=1 < m(2), ni > +a1 with m = m(1) + m(2) and

therefore a building block consisting of two operators (Om(1))α1β1(Om(2))α2β2. We should

now construct the related gauge invariant operators. Out of these building blocks we

cannot construct a single determinant because we don’t have an epsilon symbol with 2N

indices, but we can easily construct a product operator using four epsilons. We expect,

based on Beasley’s prescription, a one to one correspondence between the points in the N

times symmetric product of the polytope P2D1 and the baryonic operators with baryonic

charge +2 in field theory. Naively, it would seem that, with the procedure described

above, we have found many more operators. Indeed the procedure was plagued by two

ambiguities: in the construction of the building blocks, it is possible to find more than a

pair of paths corresponding to the same m (and thus the same U(1) charges) that are not

F -term equivalent; in the construction of the gauge invariants we have the ambiguity on

how to distribute the operators between the two determinants. The interesting fact is that

these ambiguities seem to disappear when we consider the final results for gauge invariant

operators, due to the F -term relations and the properties of the epsilon symbol. One can

indeed verify, at least in the case of P2D1 and for various values of N , there is exactly a

one to one correspondence between the points in the N times symmetric product of the

polytope and the baryonic operators in field theory. It would be interesting to understand

if this kind of prescription can be made rigorous.

The ambiguity in making a correspondence between sections of the polytope and op-

erators is expected and it is not particularly problematic. The correct correspondence is

between the states |hm1 , . . . , hmN
> and baryonic gauge invariant operators. The sections

in the geometry are not states of the string theory and the paths/operators are not gauge
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invariant operators. What the AdS/CFT correspondence tells us is that there exists a one

to one relation between states in string theory and gauge invariant operators in field theory,

and this is a one to one relation between the points in the N -fold symmetric product of a

given polytope and the full set of gauge invariant operators with given baryonic charge.

The comparison with field theory should be then done as follows. One computes

the partition functions ZD,N of the N -fold symmetrized product of the polytope PD and

compares it with all the gauge invariant operators in the sector of the Hilbert space with

given baryonic charge. We have explicitly done it for the conifold for the first few values

of N and the operators with lower dimension. In forthcoming papers [42] we will actually

resum the partition functions ZD,N and we will write the complete partition function for

the chiral ring of the conifold and other selected examples; we will compare the result with

the dual field theory finding perfect agreement.

The issues of multiplicities that we already found in the case of polytopes associated

with elementary fields persists for generic polytopes. Its complete understanding is of

utmost importance for writing a full partition function for the chiral ring [42].

6. Counting BPS baryonic operators

In this section, as promised, we count the number of BPS baryonic operators in the sector

of the Hilbert space HD, associated with a divisor D. All operators in HD have fixed

baryonic charges. Their number is obviously infinite, but, as we will show, the number

of operators with given charge m ∈ T 3 under the torus action is finite. It thus makes

sense to write a partition function ZD,N for the BPS baryonic operators weighted by a T 3

charge q = (q1, q2, q3). ZD,N will be a polynomial in the qi such that to every monomial

n qm1
1 qm2

2 qm3
3 we associate n BPS D3 brane states with the R-charge and the two flavor

charges parametrized by
∑d

i=1(< m,ni > ai + Nciai).

The computation of the weighted partition function is done in two steps. We first

compute a weighted partition function ZD, or character, counting the sections of O(D);

these correspond to the hm which are the elementary constituents of the baryons. In a

second time, we determine the total partition function ZD,N for the states |hm1 . . . hmN
>

in HD.

6.1 The character ZD

We want to resum the character, or weighted partition function,

ZD = Tr{q|H0(X,O(D)} =
∑

m∈PD∩M

qm (6.1)

counting the integer points in the polytope PD weighted with their charge under the T 3

torus action.

In the trivial case O(D) ∼ O, ZD is just the partition function for holomorphic func-

tions discussed in [35, 33], which can be computed using the Atyah-Singer index theo-

rem [35]. Here we show how to extend this method to the computation of ZD for a generic

divisor D.
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Suppose that we have a smooth variety and a line bundle O(D) with a holomorphic

action of T k (with k = 1, 2, 3 and k = 3 is the toric case). Suppose also that the higher

dimensional cohomology of the line bundle vanishes, H i(X,O(D)) = 0, for i ≥ 1. The

character (6.1) then coincides with the Leftschetz number

χ(q,D) =

3
∑

p=0

(−1)pTr{q|Hp(X,O(D))} (6.2)

which can be computed using the index theorem [50]: we can indeed write χ(q,D) as a sum

of integrals of characteristic classes over the fixed locus of the T k action. In this paper,

we will only consider cases where T k has isolated fixed points PI . The general case can be

handled in a similar way. In the case of isolated fixed points, the general cohomological

formula19 considerably simplifies and can be computed by linearizing the T k action near

the fixed points. The linearized action can be analysed as follows. Since PI is a fixed point,

the group T k acts linearly on the normal (=tangent) space at PI , TXPI
∼ C

3. The tangent

space will split into three one dimensional representations TXPI
=

∑3
λ=1 Lλ of the abelian

group T k. We denote the corresponding weights for the q action with mλ
I , λ = 1, 2, 3.

Denote also with m0
I the weight of the action of q on the C fiber of the line bundle O(D)

over PI . The equivariant Riemann-Roch formula expresses the Leftschetz number as a sum

over the fixed points

χ(q,D) =
∑

PI

qm0
I

∏3
λ=1(1 − qmλ

I )
(6.4)

We would like to apply the index theorem to our Calabi-Yau cone. Unfortunately,

X = C(H) is not smooth and a generic element of T k has a fixed point at the apex of the

cone, which is exactly the singular point. To use Riemann-Roch we need to resolve the

cone X to a smooth variety X̃ and to find a line bundle O(D̃) on it with the following two

properties: i) it has the same space of sections, H0(X̃,O(D̃)) = H0(X,O(D)), ii) it has

vanishing higher cohomology H i(X̃,O(D̃)) = 0, i ≥ 1.

Notice that the previous discussion was general and apply to all Sasaki-Einstein man-

ifolds H. It gives a possible prescription for computing ZD even in the non toric case. In

the following we will consider the case of toric cones where the resolution X̃ and the divisor

D̃ can be explicitly found.

Toric Calabi-Yau cones have a pretty standard resolution by triangulation of the toric

diagram, see figure 6. The fan of the original variety X consists of a single maximal cone,

with a set of edges, or one-dimensional cones, Σ(1) whose generators ni are not linearly

19Equivariant Riemann-Roch, or the Lefschetz fixed point formula, reads

χ(q, D) =
X

Fi

Z

Fi

Todd(Fi)Chq(D)
Q

λ
(1 − qmi

λe−xλ)
(6.3)

where Fi are the set of points, lines and surfaces which are fixed by the action of q ∈ T k, Todd(F ) is the

Todd class Todd(F ) = 1 + c1(F ) + · · · and, on a fixed locus, Chq(D) = qm0

ec1(D) where m0 is the weight

of the T k action. The normal bundle Ni of each fixed submanifold Fi has been splitted in line bundles; xλ

are the basic characters and mi
λ the weights of the q action on the line bundles.
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D1

D2

D3

D4

I

II

(0,0,1)III

IV (1,0,1)

(0,1,1)

(−1,0,1)

(1,−1,1)

D1

D2

D3

D4

(0,0,1)III

IV (1,0,1)

(0,1,1)

(−1,0,1)

(1,−1,1)

III

Figure 6: Two triangulation for the toric diagram of Y 2,1. The internal point (0, 0, 1) has been

blown up. One line and four planes have been added to the original fan. There are four maximal

cones and corresponding fixed points, denoted I,II,III and IV.

independent in Z
3. The resolutions of X consist of all the possible subdivisions of the fan

in smaller three dimensional cones σI . The new variety X̃ is still a Calabi-Yau if all the

minimal generators ni of the one-dimensional cones lie on a plane. This process looks like a

triangulation of the toric diagram. If each three-dimensional cone is generated by linearly

independent primitive vectors, the variety is smooth. The smooth Calabi-Yau resolutions

of X thus consist of all the triangulation of the toric diagram which cannot be further

subdivided. Each three dimensional cone σI is now a copy of C
3 and the smooth variety

X̃ is obtained by gluing all these C
3 according to the rules of the fan. T 3 acts on each

σI in a simple way: the three weights of the T 3 action on a copy of C
3 are just given

by the primitive inward normal vectors mλ
I to the three faces of σI . Notice that each σI

contains exactly one fixed point of T 3 (the origin in the copy of C
3) with weights given by

the vectors mλ
I .

The line bundles on X̃ are given by D̃ =
∑

i ciDi where the index i runs on the set of

one-dimensional cones Σ̃(1), which is typically bigger than the original Σ(1). Indeed, each

integer internal point of the toric diagram gives rise in the resolution X̃ to a new divisor.

The space of sections of D̃ are still determined by the integral points of the polytope

P̃D = {u ∈ MR| < u, ni >≥ −ci , ∀i ∈ Σ̃(1)} (6.5)

It is important for our purposes that each maximal cone σI determines a integral point

m0
I ∈ M as the solution of this set of three equations:

< m0
I , ni >= −ci, ni ∈ σI , (6.6)

In a smooth resolution X̃ this equation has always integer solution since the three generators

ni of σI are a basis for Z
3. As shown in [44], m0

I is the charge of the local equation for the

divisor D̃ in the local patch σI . It is therefore the weight of the T 3 action on the fiber of

O(D) over the fixed point contained in σI .

The strategy for computing ZD is therefore the following. We smoothly resolve X and

find a divisor D̃ =
∑

i ciDi by assigning values ci to the new one-dimensional cones in Σ̃(1)

that satisfies the two conditions
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• It has the same space of sections, H0(X̃,O(D̃)) = H0(X,O(D)). Equivalently, the

polytope P̃D has the same integer points of PD.

• It has vanishing higher cohomology H i(X̃,O(D̃)) = 0, i ≥ 1. As shown in [44] this is

the case if there exist integer points m0
I ∈ M that satisfy the convexity condition20

< m0
I , ni > = −ci, ni ∈ σI

< m0
I , ni > ≥ −ci, ni /∈ σI (6.7)

There are many different smooth resolution of X, corresponding to the possible complete

triangulation of the toric diagram. It is shown in the appendix B that we can always find

a compatible resolution X̃ and a minimal choice of ci that satisfy the two given conditions.

The function ZD is then given as

ZD =
∑

PI

qm0
I

∏3
λ=1(1 − qmλ

I )
(6.8)

where in the toric case for every fixed point PI there is a maximal cone σI , mλ
I are the

three inward primitive normal vectors of σI and m0
I are determined by equation (6.7). This

formula can be conveniently generalized to the case where the fixed points are not isolated

but there are curves or surfaces fixed by the torus action.

We finish this section with two comments. The first is a word of caution. Note that

if we change representative for a divisor in its equivalence class (ci ∼ ci+ < M,ni >) the

partition function ZD is not invariant, however it is just rescaled by a factor qM .

The second comment concerns toric cones. For toric CY cones there is an alternative

way of computing the partition functions ZD by expanding the homogeneous coordinate

ring of the variety according to the decomposition (4.7). Since the homogeneous coordinate

ring is freely generated by the xi, its generating function is simply given by

1
∏d

i=1(1 − xi)
.

By expanding this function according to the grading given by the (C∗)d−3 torus action we

can extract all the ZD. This approach will be discussed in detail in a future publication [42].

6.2 Examples

6.2.1 The conifold

The four primitive generators for the one dimensional cones of the conifold are

{(0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 1, 1)} and we call the associated divisors D1,D2,D3 and D4

respectively. They satisfy the equivalence relations D1 ∼ D3 ∼ −D2 ∼ −D4. There is only

one baryonic symmetry under which the four homogeneous coordinates transform as

(x1, x2, x3, x4) ∼ (x1µ, x2/µ, x3µ, x4/µ) (6.9)

20The m0
Is determine a continuous piecewise linear function ψD on the fan as follows: in each maximal

cone σI the function ψD is given by < m0
I , v >, v ∈ σI . As shown in [44], the higher dimensional cohomology

vanishes, Hi(X̃,O(D)) = 0, i ≥ 1, whenever the function ψD is upper convex.
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II

2D1

D3D4

(0,1,1) (1,1,1)

(1,0,1)(0,0,1)

D2D1

D3D4

(0,1,1) (1,1,1)

(1,0,1)(0,0,1)

I

II I

D

Figure 7: The two resolutions for the conifold. No internal points have been blown up. In each

case, one line have been added to the original fan; there are two maximal cones and corresponding

fixed points, denoted I,II.

The conifold case is extremely simple in that the chiral fields of the dual gauge theory

are in one-to-one correspondence with the homogeneous coordinates: (x1, x2, x3, x4) ∼

(A1, B1, A2, B2). Recall that the gauge theory is SU(N)× SU(N) with chiral fields Ai and

Bp transforming as (N, N̄ ) and (N̄ ,N) and as (2, 1) and (1, 2) under the enhanced SU(2)2

global flavor symmetry.

The two possible resolutions for the conifold are presented in figure 7. We first compute

the partition function for the divisor D1 using the resolution on the left hand side of the

figure. Regions I and II correspond to the two maximal cones in the resolution and,

therefore, to the two fixed points of the T 3 action. Denote also q = (q1, q2, q3). Using the

prescriptions given above, we compute the three primitive inward normals to each cone

and the weight of the T 3 action on the fiber. It is manifest that the conditions required in

equation (6.7) are satisfied.

Region I mλ
I = {((1, 0, 0), (0, 1, 0), (−1,−1, 1)} m0

I = (1, 1,−1)

Region II mλ
II = {(0,−1, 1), (−1, 0, 1), (1, 1,−1)} m0

II = (0, 0, 0)

ZD1 =
q1(q2 − q3) + q3 − q2q3

(1 − q1)(1 − q2)(1 − q3/q1)(1 − q3/q2)q3
(6.10)

For simplicity, let us expand ZD1 along the direction of the Reeb vector (3/2, 3/2, 3) by

putting q1 = q2 = q, q3 = q2. This corresponds to count mesonic excitations according to

their R-charge, forgetting about the two U(1)2 flavor indices.

ZD1 =
2

(1 − q)3
=

∞
∑

n=0

(n + 1)(n + 2)qn = 2 + 6q + 12q2 + · · · (6.11)

This counting perfectly matches the list of operators in the gauge theory. In the sector of

Hilbert space with baryonic charge +1 we find the operators (3.2)

Ai , AiBpAj , AiBpAjBqAk , . . . . (6.12)

The F-term equations AiBpAj = AjBpAi, BpAiBq = BqAiBp guarantee that the SU(2) ×

SU(2) indices are totally symmetric. The generic operator is then of the form A(BA)n
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transforming in the (n + 2, n + 1) representation of SU(2) × SU(2) thus exactly matching

the qn term in ZD1 . The R-charge of the operators in ZD1 is accounted by the exponent of

q by adding the factor q
P

ciRi = q1/2 which is common to all the operators in this sector

(cfr. equation (4.2)). The result perfectly matches with the operators A(BA)n since the

exact R-charge of Ai and Bi is 1/2. We could easily include the SU(2)2 charges in this

counting.

Analogously, we obtain for ZD3

ZD3 =
q1(q2 − q3) + q3 − q2q3

(1 − q1)(1 − q2)(q1 − q3)(q2 − q3)
= q3ZD1/(q2q1) (6.13)

Since D1 ∼ D3 the polytope PD3 is obtained by PD1 by a translation and the the two

partition functions ZD1 and ZD3 are proportional. Finally, the partition functions for D2

and D4 are obtained by choosing the resolution in the right hand side of figure 7, for which

is possible to satisfy the convexity condition (6.7)

ZD2 =
q2(q1 + q2 − q1q2 − q3)

(1 − q1)(1 − q2)(q1 − q3)(q2 − q3)

ZD4 =
q1(q1 + q2 − q1q2 − q3)

(1 − q1)(1 − q2)(q1 − q3)(q2 − q3)
= q1ZD2/q2 (6.14)

6.2.2 Other examples: Y p,q, delPezzo and Lp,q,r

In this section we give other examples of partition functions ZD considering the Y p,q, the

delPezzo and Lp,q,r manifolds.

The Y p,q toric diagram has four vertices and one baryonic charge. The dual gauge

theory has an SU(2) × U(1) flavor symmetry. We consider the simplest example, Y 2,1.

The fan for Y 2,1 has four primitive generators {(1, 0, 1), (0, 1, 1), (−1, 0, 1), (1,−1, 1)}. The

equivalence relations among divisors give D2 ∼ D4 ∼ −2D3 and D1 = 3D3 and the

corresponding homogeneous coordinates scale as

(x1, x2, x3, x4) ∼ (x1µ
3, x2/µ

2, x3µ, x4/µ
2) (6.15)

under the baryonic symmetry.

There are two different completely smooth resolutions that are presented in figure 6.

The toric diagram has one internal point; the corresponding four cycle is blown up in each

smooth resolution of the cone and introduces a new divisor D5. In each resolution there

are four fixed points for the action of T 3.

To compute the partition functions we need to chose a resolution and the number c5

that satisfy the convexity condition (6.7). The partition function for ZD3 can be computed
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by using the resolution on the left hand side in the figure and the number c5 = 0.

Region I mλ
I = {((−1, 0, 1), (0,−1, 0), (1, 1, 0)} m0

I = (0, 0, 0)

Region II mλ
II = {((−1,−1, 1), (0, 1, 0), (1, 0, 0)} m0

II = (0, 0, 0)

Region III mλ
III = {(1,−1, 1), (0, 1, 0), (−1, 0, 0)} m0

III = (1, 0, 0)

Region IV mλ
IV = {(1, 2, 1), (0,−1, 0), (−1,−1, 0)} m0

IV = (1, 1, 0)

ZD3 =
−q2

3 + q2
2(q

2
1q3 − q2

3 + q1(1 + q3 − q2
3)) − q2(−1 + q3 + q2

3 − q1 − q1q3 + q1q
2
3)

(1 − q3/(q1q2))(1 − q3/q1)(q2 − q1q3)(1 − q1q2
2q3)

(6.16)

ZD3 can be expanded using the geometric series by setting q3 = qq1q2. It is immediate to

verify that the first terms in the expansion ZD3 = 1 + q1 + q1q2 + q(q2 + 1 + q1 + · · ·) + · · ·

exactly match the list of field theory operators given in section 5 (cfr table 1).

The partition functions for the other three elementary divisors can be computed in a

similar way. In order to satisfy the convexity condition we use the resolution on the left of

figure 6 for D2 and D4 and the resolution on the right for D1. In all cases we can safely

put c5 = 0.

ZD1 =
q2
1q

2
2 + q2(1 + q2

1(1 + (1 + q1)(q2 + q2
2)))q3 − q1(1 + (1 + q1)(q2 + q2

2 + q3
2))q

2
3

(q1q2 − q3)(q1 − q3)(q2 − q1q3)(1 − q1q2
2q3)

ZD2 =
q2
1q

2
2q3 − q2

1q
2
2q

2
3 − q3(q2 + (1 + q2 + q2

2)q3) + q1(1 + q2)(q3 + q2 + q2
2q3 − q2q

2
3)

(q1q2 − q3)(1 − q3/q1)(q2 − q1q3)(1 − q1q
2
2q3)

ZD4 = q2ZD2

The proportionality of ZD4 and ZD2 follows from the equivalence D2 ∼ D4.

Similarly, one can compute the partition functions for the other Y p,q manifolds and,

more generally, for the Lp,q,r manifolds which correspond to the most general toric diagram

with four external points. The flavor symmetry for Lp,q,r is U(1)2 and, for smooth mani-

folds, there is exactly one baryonic symmetry. The number of internal points increases with

p, q, r thus making computations more involved. As an example, we present the partition

function for the D4 divisor in L1,5,2. We refer to figure 8 for notations and the choice of a

compatible resolution.

ZD4 =
P (q1, q2, q3)

(1 − q2)(1 − q4
1q2)(q1 − q3)(q3

1q
2
2 − q5

3)

P (q1, q2, q3) = q1q2(q
6
1q

2
2 − q5

3 − q1q
5
3 − q2

1q
2
3(−1 + q2 − q3 + q2q3 + q3

3)

+q5
1q2(q3(1 + q3) − q2(−1 + q3 + q2

3))

+q4
1(−q2

2q3 + q4
3 + q2(1 + q3 − q4

3))

+q3
1(q

3
3 + q4

3 − q5
3 − q2(−1 + q3

3 + q4
3))) (6.17)
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D1 D2

D3

D4

D2

D3

D5
D4

D6

D1

(−1,4,1)

(1,1,1)

(1,0,1)(0,0,1)

(0,1,1)

(0,2,1)

(0,0,1)

(−1,1,1) (0,1,1)

(1,0,1)(−1,0,1)

(0,−1,1) (1,−1,1)

Figure 8: L1,5,2 and dP3. On the left: a compatible resolution for the D4 partition function of

L1,5,2, with six fixed points. On the right: a compatible resolution for the D2 partition function for

dP3, with six fixed points. In both cases, one can safely choose the ci of the extra divisors equal to

zero.

Finally, we give an example based on the dP3 manifolds, whose toric diagram has

six external points and thus three different baryonic symmetries. Once again we refer to

figure 8 for notations.

ZD2 =
P (q1, q2, q3)

(q1 − q3)(1 − q3/q2)(q3 − q1q2)(1 − q1q3)(1 − q2q3)(1 − q1q2q3)

P (q1, q2, q3) = (q2 + q1(1 + 2q2 + q1(1 + q2)(1 + q2(1 + q1 + q2))))q
2
3

−(1 + q1((1 + q2)
2 + q1(1 + q2)(1 + 2q2) + q2

1q2(1 + q2 + q2
2)))q

3
3

+q1(1 + (1 + q1)q2(1 + q1q2))q
4
3 − q2

1q2 − q1q2(q1 + q2)q3

Following this procedure one is able to compute the partition function ZD for every divisor

of a generic CY conical toric singularity.

6.3 The partition function for BPS baryonic operators

The BPS baryonic states in a sector of the Hilbert space associated with the divi-

sor D are obtained from the hm by considering the N-fold symmetrized combinations

|hm1 , . . . ., hmN
>. The partition function ZD,N for BPS baryon is obtained from ZD by

solving a combinatorial problem [30, 33].

Given ZD as sum of integer points in the polytope PD

ZD(q) =
∑

m∈PD∩M

qm (6.18)
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the generating function GD(p, q) for symmetrized products of elements in ZD is given by

GD(p, q) =
∏

m∈PD∩M

1

1 − pqm
=

∞
∑

N=0

pNZD,N (q) (6.19)

This formula is easy to understand: if we expand (1 − pqm)−1 in geometric series, the

coefficient of the term pk is given by all possible products of k elements in PD, and this is

clearly a k-symmetric product.

It is easy to derive the following relation between ZD(q) and GD(p, q)

GD(p, q) = e
P

∞

k=1
pk

k
ZD(qk) (6.20)

In the case we have computed ZD(q) in terms of the fixed point data of a compatible

resolution as in equation (6.8)

ZD(q) =
∑

I

qm0
I

∏3
λ=1(1 − qmλ

I )
=

∑

I

∑

s1
I
,s2

I
,s3

I

qm0
I q

P3
λ=1 sλ

I mλ
I

formula (6.20) allows, with few algebraic manipulation, to write the generating function as

follows

GD(p, q) =
∏

PI

∞
∏

sλ
I
=0

1

1 − pqm0
I q

P3
λ=1 sλ

I
mλ

I

(6.21)

We are eventually interested in the case of BPS baryonic operators associated with

the symmetrized elements |hm1 , . . . ., hmN
>, and thus to the N -fold symmetric partition

function:

ZD,N(q) ≡
1

N !

∂NGD(p, q)

∂pN

∣

∣

∣

p=0
(6.22)

Thanks to GD(0, q) = 1 (see eq. (6.20)) we can easily write ZD,N in function of ZD. For

example we have:

ZD,1(q) = ZD(q)

ZD,2(q) =
1

2
(ZD(q2) + Z2

D(q))

ZD,3(q) =
1

6
(2ZD(q3) + 3ZD(q2)ZD(q) + Z3

D(q))

Once we know ZD for a particular baryonic sector of the BPS Hilbert space it is easy to

write down the complete partition function ZD,N .

7. Volumes of divisors

One of the predictions of the AdS/CFT correspondence for the background AdS5 × H is

that the volume of H is related to the central charge a of the CFT, and the volumes of the

three cycles wrapped by the D3-branes are related to the R-charges of the corresponding

baryonic operators [4, 37]. We already used this information in formula (4.6). To many
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purposes, it is useful to consider the volumes as functions of the Reeb Vector b. Recall

that each Kähler metric on the cone, or equivalently a Sasakian structure on the base

H, determines a Reeb vector b = (b1, b2, b3) and that the knowledge of b is sufficient to

compute all volumes in H [17]. Denote with VolH(b) the volume of the base of a Kähler

cone with Reeb vector b. The Calabi-Yau condition c1(X) requires b3 = 3 [17]. As shown

in [17, 35], the Reeb vector b̄ associated with the Calabi-Yau metric can be obtained by

minimizing the function VolH(b) with respect to b = (b1, b2, 3). This volume minimization

is the geometrical counterpart of a-maximization in field theory [51]; the equivalence of

a-maximization and volume minimization has been explicitly proven for all toric cones

in [19] and for a class a non toric cones in [28]. For each Reeb vector b = (b1, b2, b3) we can

also define the volume of the three cycle obtained by restricting a divisor D to the base,

VolD(b). We can related the value VolD(b̄) at the minimum to the exact R-charge of the

lowest dimension baryonic operator associated with the divisor D [4, 37] as in formula (4.6).

All the geometrical information about volumes can be extracted from the partition

functions. The relation between the character ZO(q) for holomorphic functions on C(H)

and the volume of H was suggested in [52] and proved for all Kähler cones in [35]. If we

define q = (e−b1t, e−b2t, e−b3t), we have [52, 35]

VolH(b) = π3 lim
t→0

t3ZO(e−bt) (7.1)

This formula can be interpreted as follows: the partition function ZO(q) has a pole for

q → 1, and the order of the pole - three - reflects the complex dimension of C(H) while

the coefficient is related to the volume of H.

Here we propose that, similarly, the partition functions ZD contain the information

about the three-cycle volumes VolD(b). Indeed we suggest that, for small t,21

ZD(e−bt)

ZO(e−bt)
∼ 1 + t

πVolD(b)

2VolH(b)
+ . . . (7.2)

Notice that the leading behaviour for all partition functions ZD is the same and proportional

to the volume of H; for q → 1 the main contribution comes from states with arbitrarily large

dimension and it seems that states factorized in a minimal determinant times gravitons

dominate the partition function. The proportionality to VolH is then expected by the

analogy with giant gravitons probing the volume of H. The subleading term of order 1/t2

in ZD then contains information about the dimension two complex divisors. Physically it is

easy to understand that ZD contains the information about the volumes of the divisors. We

can think at ZD as a semiclassical parametrization of the holomorphic non-trivial surfaces

in X, with a particular set of charges related to D; while ZO parametrizes the set of trivial

surfaces in X. Thinking in this way it is clear that both know about the volume of the

compact space, but only ZD has information on the volumes of the non-trivial three cycles.

For divisors D associated with elementary fields we can rewrite equation (7.2) in a

simple and suggestive way in terms of the R-charge, or dimension, of the elementary field

21And a convenient choice of D in its equivalence class.
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(see equation (4.6))

ZD(e−bt)

ZO(e−bt)
∼ 1 + t

3RD(b)

2
+ . . . = 1 + t∆(b) + . . . (7.3)

As a check of formula (7.2), we can expand the partition functions for the conifold

computed in the previous section

ZDi

ZO
∼

(

1 +
(b1 − b3)(b2 − b3)t

b3
, 1 +

(b1b3 − b1b2)t

b3
, 1 +

b1b2t

b3
, 1 +

(b2b3 − b1b2)t

b3

)

(7.4)

and compare it with the formulae in [17]

VolDi
(b) =

2π2 det{ni−1,ni,ni+1}

det{b,ni−1,ni}det{b,ni,ni+1}
, VolH(b) =

π

6

d
∑

i=1

VolDi
(b) (7.5)

One can perform similar checks for Y 2,1 and the other cases considered in the previous

section, with perfect agreement. A sketch of a general proof for formula (7.2) is given in

the appendix A.

We would like to notice that, by expanding equation (6.8) for q = e−bt → 1 and

comparing with formula (7.2), we are able to write a simple formula for the volumes of

divisors in terms of the fixed point data of a compatible resolution

VolD(b) = 2π2
∑

PI

(−m0
I ,b)

∏3
λ=1(m

λ
I ,b)

(7.6)

This formula can be conveniently generalized to the case where the fixed points are not

isolated but there are curves or surfaces fixed by the torus action.

The previous formula is not specific to toric varieties. It can be used whenever we are

able to resolve the cone C(H) and to reduce the computation of ZD to a sum over isolated

fixed points (and it can be generalized to the case where there are fixed submanifolds). As

such, it applies also to non toric cones. The relation between volumes and characters may

give a way for computing volumes of divisors in the general non toric case, where explicit

formulae like (7.5) are not known.

8. Conclusion and outlook

In this paper we proposed a general procedure to construct partition functions counting

both baryonic and non baryonic BPS operators of a field theory dual to a toric geometry.

We also explained how one can extract the volumes of the three cycles from the partition

functions. It would be interesting to understand better the counting of multiplicity, and to

find a way to write down a complete partition function for the BPS gauge invariant scalar

operators [42].

Our computation is done on the supergravity side, and it is therefore valid at strong

coupling. Similarly to the partition function for BPS mesonic operators [30, 32, 33], we

expect to be able to extrapolate the result to finite value for the coupling.
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It would be also interesting to understand better the non toric case. Most of the

discussions in this paper apply to this case as well. The classical configurations of BPS D3

branes wrapping a divisor D are still parameterized by the generic section of H0(X,O(D))

and Beasley’s prescription for constructing the BPS Hilbert space is unchanged. The

partition function ZD(q) can be still defined, with the only difference that q ∈ T k with

k strictly less than three. ZD(q) can be still computed by using the index theorem as

explained in section 6 and the relation between ZD(q) and the three cycles volumes should

be still valid. In particular, when X has a completely smooth resolution with only isolated

fixed points for the action of T k, formulae (6.8) and (7.6) should allow to compute the

partition functions and the volume. What is missing in the non-toric case is an analogous

of the homogeneous coordinates, the polytopes and the existence of a canonical smooth

resolution of the cone. But this seems to be just a technical problem.
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A. Localization formulae for the volumes of divisors

Relation (7.2) can be easily proven in the case where the Reeb action is regular, by adapting

an argument in [52, 53], as refined in [35]. For a regular action, H is a U(1) principal bundle

over a Kähler manifold V and X can be written as a line bundle L → V . We can blow up

V and apply equivariant Riemann-Roch to the resulting manifold. Since the Reeb vector

acts on the fibers of L, its fixed locus is the entire V with weight 1. We thus obtain22

ZD(q) =

∫

V

Todd(V )Ch(D)

1 − qe−c1(L)
(A.1)

Put q = e−bt in this formula. The denominator must be expanded in a formal power series

of forms before taking the limit t → 0

1

1 − qe−c1(L)
=

1

1 − e−bt
−

e−bt

(1 − e−bt)2
c1(L) +

e−bt + e−2bt

2(1 − e−bt)3
c1(L)2

Since the integral over V selects forms of degree four we obtain

ZD(q) =
1

(bt)3

∫

V
c1(L)2 −

1

(bt)2

∫

V
c1(L) ∧ Todd(V ) ∧ Ch(D)

∣

∣

∣

degree 4
+ . . .

The only information we need about the Todd class is that Todd(V ) = 1 + . . .. We thus

obtain
ZD(q)

ZO
= 1 − b t

∫

V c1(L) ∧ c1(D)
∫

V c1(L) ∧ c1(L)
+ . . .

22The multiplicative ambiguity in ZD is reflected in an analogous ambiguity in Ch(D).
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The volumes of H and of the three cycle D ∩H, which are U(1) fibrations over V and

D ∩ V , are proportional to

VolD(b) ∼

∫

D
ωV =

∫

V
ωV ∧ c1(D)

VolH(b) ∼

∫

V

ω2
V

2
(A.2)

Considering that the first Chern class of L is proportional to the Kähler form ωV on V ,23

we finally obtain
ZD(q)

ZO
= 1 + t

πVolD(b)

2VolH(b)
+ . . .

Formula (7.2) could be proven for a generic Sasaki-Einstein by generalizing arguments

in [35]. We only suggest a possible proof, leaving to experts the subtle task of filling

mathematical details. As argued in [35], it is enough to prove (7.2) for quasi regular actions;

since a rational b ∈ T k defines a Sasaki structure on H with quasi regular Reeb action,

formula (7.2) would be true for all rational b and, therefore, for continuity, for all b. For

a quasi regular action, L → V is an orbifold and we should use the Kawasaki-Riemann-

Roch formula [54] which have extra contributions with respect to (A.1). However, for

isolated orbifold singularities, the extra contributions are characteristic classes integrated

over points; these contribute to ZD(q) only at order 1/t and should be irrelevant for our

purposes.

It would be interesting to fully understand formula (7.2) in terms of localization. It

seems that some localization theorem is at work here. Considering that the action of the

Reeb field

ξ =

k
∑

i=1

bi
∂

∂φi

(we have chosen k angular coordinates for the torus T k action, k = 1, 2, 3) is hamiltonian,

we can define the equivariantly closed form ωξ = ω − H starting from the kähler class

ω.24 As shown in [35], the hamiltonian for the Reeb action is H = r2/2. Analogously

we can define the equivariant first Chern class cξ
1(D) associated with the divisor D. It is

interesting to notice that the expression (7.6) for the volumes can be written as the integral

of equivariantly characteristic classes,

1

2

∫

X
eωξ

∧ cξ
1(D) = 2π2

∑

σI

(−m0
I , b)

∏3
λ=1(m

λ
I , b)

(A.3)

This equality can be proven as follows. Suppose that we have found a smooth resolution

X̃ of the cone X and a divisor D̃ that smoothly approach D in the singular limit. We may

then compute the previous integral for X̃ and D̃ and take afterwards the limit X̃ → X.

23We use the normalizations of [35]: c1(L) = −bc1(V )/3 and ωV = πc1(V )/3. These formulae are valid

also for a quasi regular action. The length of the U(1) fiber is 2π/b.
24Given a vector field ξ the equivariant derivative dξ of a form α is dξα = dα + iξα; ωξ is clearly

equivariantly closed, because ω is closed and H is the Hamiltonian of the Reeb vector field (iξω = dH).

– 37 –



J
H
E
P
0
6
(
2
0
0
7
)
0
6
9

Integrals of equivariantly closed forms, like (A.3), can be computed by using localization

theorems. Indeed given an equivariantly closed form α and an action along a direction in

T k (k = 1, 2, 3 ) with only isolated fixed points, it can be shown that

∫

α = (2π)3
∑

PI

α|PI
∏3

λ=1(m
λ
I , b)

(A.4)

where mλ
I are, as usual, the weights of the action of ξ on the tangent space at PI . The

integral over a point PI takes contribution only from the forms with zero degree in the

equivariant forms,

ωξ → −H(PI)

cξ
1(D) → −

(m0
I , b)

2π
(A.5)

where m0
I is the weight of the action on the line bundle fiber over PI .

25 Taking into account

that in the singular limit all the PIs collapse to the apex of the cone where H = 0, we

finally obtain formula (A.3).

On the other hand, also the volume of the base D ∩ H can be written as an integral

VolD(b) =
1

2

∫

D
e−r2/2 ω2

2
=

1

2

∫

D
eωξ

(A.6)

Comparing this equation with the expression (A.3) for the volumes we find the suggestive

equality
∫

D
eωξ

=

∫

X
eωξ

∧ cξ
1(D) . (A.7)

concerning T invariant divisors D. Our general expression for the volumes (7.6) (which, in

case there exist smooth resolutions for X with isolated fixed points, is completely equivalent

to the general formula (7.2)) would be proved if we were able to prove equation (A.7).

The relation between equivariant cohomology and homology seems to be not completely

understood (to us at least), and we do not know under what condition the equation (A.7)

is valid, even if this is probably well known to experts. A better understanding of this

formula could give a simple alternative proof for (7.2).

B. Convexity condition and integer counting

In this appendix we give an alternative explanation of the formula (6.8) for computing the

partition function ZD defined in (6.1) and we explain why there always exists a suitable

resolution of X = C(H) and a suitable choice of weights c̃i for equation (6.8). In section 6.1

we explained how to derive this formula from the equivariant Riemann-Roch theorem.

However since ZD counts the holomorphic sections of O(D) and since we know that, for

toric singularities, these sections are in one to one correspondence with the integer points

25The second formula follows from the standard replacement c1 → c1 − w/(2π), with w the weight for

the group action, for line bundles over fixed submanifolds.
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Figure 9: (a) The (p,q) web for the conifold resolution corresponding to the first diagram in

figure 7.(b) A pictorial description of equation (B.5).

inside the polytope PD, we can simply look at this problem as that of counting integer

points inside a polytope, with the weights q = (q1, q2, q3) being associated with the three

cartesian coordinates: ZD =
∑

m∈PD∩M qm. This simple point of view allows to have a

direct understanding of the counting problem.

To be concrete consider for instance the case of the conifold; let us write the character

that counts integer points inside the dual fan, which is equivalent to counting holomorphic

functions, or sections of the trivial bundle O. The dual fan is generated by the four vectors:

m1 = (1, 0, 0) m2 = (0, 1, 0) m3 = (−1, 0, 1) m4 = (0,−1, 1) (B.1)

all attached at the origin n = (0, 0, 0). To compute the character we will use for instance

the first resolution in figure 7, whose corresponding (p,q) web is drawn in figure 9 a). Let us

define the vector k = (−1,−1, 1). We split the (p,q) web into two subwebs corresponding

to region I and II respectively of the resolution in figure 7:

Region I {m1,m2, k} v1 = (0, 0, 0)

Region II {m3,m4,−k} v2 = (0, 0, 0)
(B.2)

We denote with v1 (v2) the integer point to which the three vectors of region I (II) are

attached. In this case v1 = v2 = (0, 0, 0). Since we have completely resolved the conifold,

according to [35], the character is:

ZO =
1

(1 − qm1)(1 − qm2)(1 − qk)
+

1

(1 − qm3)(1 − qm4)(1 − q−k)
(B.3)

where as usual qh ≡ qh1
1 qh2

2 qh3
3 . It is simple to give an interpretation of this formula in

terms of counting of integer points. Let us for instance expand the first term, associated

with Region I, in equation (B.3). We get

(

∞
∑

i=0

qi m1

)





∞
∑

j=0

qj m2





(

∞
∑

h=0

qh k

)

=
∑

i,j,h≥0

qi m1+j m2+h k (B.4)
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and this is just the partition function that counts integer points inside the cone generated

by the vectors {m1,m2, k} attached to the origin v1 = (0, 0, 0). In fact each integer point

inside this cone can be written in a unique way as a linear combination of {m1,m2, k}

with positive integers due to the fact that det(m1,m2, k) = 1. This is equivalent to the

statement that region I is a triangle with integer points with minimal area (=1/2).

Note that the cone generated by {m1,m2, k} centered in (0, 0, 0) strictly includes the

cone generated by the four vectors mi; this is dual to the statement that region I is included

in the fan of the conifold. The second term in (B.3) exactly cancels the integer points that

belong to {m1,m2, k} but not to the cone generated by the mi.

The important observation is that expansion (B.4) is valid in the region {qm1 <

1, qm2 < 1, qk < 1}. Since the second term in (B.3) contains the factor q−k before ex-

panding it in the usual way we can rearrange the expression (B.3) for ZO as

ZO =
1

(1 − qm1)(1 − qm2)(1 − qk)
−

qk

(1 − qm3)(1 − qm4)(1 − qk)
(B.5)

Now we can expand both these terms in the region: qmi < 1,∀i = 1, . . . 4 and qk < 1. The

factor of qk in front of the second term simply translates the origin: we get the partition

function that counts integer points inside the cone {m1,m2, k} with origin (0, 0, 0) minus

the partition function that counts integer points inside the cone {m3,m4, k} centered at

the integer point k. Note that since k is a primitive vector, along the line with direction k

and passing through (0, 0, 0), the point k is the first integer point after the origin (0, 0, 0).

We have thus canceled all the integer points we didn’t want to count and hence ZO is the

correct partition function. A pictorial description of equation (B.5) is given in figure 9

b); we project the edges of the cones on the (p,q) web plane (first two coordinates). The

reader should try to imagine the process in three dimensions.

Obviously one can repeat the same process exchanging k ↔ −k: we expand the second

term of (B.3) for {qm3 < 1, qm4 < 1, q−k < 1} and rearrange the first term of (B.3); we see

that the same expansion for ZO is valid in the region qmi < 1,∀i = 1, . . . 4 and q−k < 1.

Combining with the previous result, we obtain that ZO can be expanded in the region

qmi < 1,∀i = 1, . . . 4, that is only the external vectors mi matter. Obviously taking the

second resolution for the conifold of figure 7 one arrives at the same function ZO.

It is easy to see now how to write the partition function that counts integer points

inside a polytope obtained by moving the origins v1 and v2 of the two cones at arbitrary,

non coincident, points. We obtain:

qv1

(1 − qm1)(1 − qm2)(1 − qk)
+

qv2

(1 − qm3)(1 − qm4)(1 − q−k)
(B.6)

since the factors qvJ are simply translating the origins. For instance in the case of ZD1 in

section 6.2.1 we had v1 = (1, 1,−1) and v2 = (0, 0, 0), there called m0
I and m0

II. This is

another explanation of formula (6.8).

It is not difficult to generalize this example to all cases we are interested in. Suppose

you have a rational convex polytope in R
3 with integer vertices; call m0

J its vertices and mλ
J

the edges attached to each vertex m0
J . We normalize the mλ

J to primitive integer vectors
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2
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a) b)

v v

v v4

1

Figure 10: (a) Edges of the polytope PD projected on the (p,q) web plane (in blue) and dual

resolved toric diagram (in black). (b) The same picture for P̃D.

(all exiting from the vertex m0
J). At each vertex suppose that the infinite cone generated

by the mλ
J is of Calabi-Yau type (meaning that the dual cone has generators lying on the

plane z = 1); as we will see later this is our case. Then one can easily compute the partition

function ZJ(q) that counts integer points inside the infinite cone with vertex in (0, 0, 0)

generated by the vectors mλ
J , with fixed J , for instance by taking any resolution of the

associated fan. Repeating the trick above, it is easy to see that the partition function that

counts integer points inside the original polytope is given by the sum
∑

J qm0
J ZJ(q) over

all vertices J of the polytope.

Now we go back to the original problem of section 6.1. To fix the notation, let ci be

the generic integer weights assigned to each vertex ni of a toric diagram that define the

bundle: O(
∑

i ciDi), i ∈ Σ(1); where Σ(1) is the set of vertices ni = (yi, zi, 1) of the toric

diagram. Let PD the polytope in R
3 defined by the equations:

PD = {m ∈ R
3|〈m,ni〉 + ci ≥ 0, ∀i ∈ Σ(1)} (B.7)

One can compute the intersections of these planes and reconstruct the edges and the vertices

of PD. There is a plane for each vertex Vi. An example is reported in figure 10 a): in this

case the polytope has 7 planes and 4 vertices vJ . In general PD is convex and has rational

edges, however its vertices are only rational and may not be integer. Therefore we define

another convex polytope P̃D as the convex hull of all integer points inside PD. Therefore

P̃D ⊆ PD and all integer points in PD belong also to P̃D: the original problem is reduced

to the problem of counting integer points inside P̃D.

It is easy to see that P̃D can be alternatively described by adding equations to those

defining PD (B.7), since the infinite edges of PD, being described by rational equations, pass

through integer points. An example is reported in figure 10 b), where we draw projected

on the (p,q) web plane the edges of P̃D corresponding to the polytope PD in figure 10 a).

Note that besides the 7 infinite pieces of planes delimiting PD we have added two finite
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pieces of planes; in the dual description this corresponds to refine the resolution of the toric

diagram by adding two internal points ñi, the perpendiculars to the two planes.

An important fact is that the resolution we need to describe P̃D is again Calabi-

Yau, meaning that the only planes we need to add to equations (B.7) are those with

perpendiculars ñi ∈ Σ̃(1) where Σ̃(1) is the set of integer vectors ñi lying on the plane of

the toric diagram and inside the toric diagram. Consider for any integer vector ñi ∈ Σ̃(1)

the plane 〈m, ñi〉 + a = 0; by varying a it is easy to see that for large positive a the plane

does not intersect P̃D; hence there is a maximal value of a for which the plane has a non

empty intersection with the closed polytope P̃D. Define c̃i such value for a. Obviously if

ñi = ni coincides with an external vertex of the toric diagram we obtain for c̃i the original

value ci. Note that all c̃i are integers since P̃D has integer vertices. Now define the polytope

Q:

Q = {m ∈ R
3|〈m, ñi〉 + c̃i ≥ 0, ∀i ∈ Σ̃(1)} (B.8)

with the c̃i defined as before. It is not difficult to prove that Q = P̃D. In fact from the

definitions we straightforwardly obtain that: P̃D ⊆ Q ⊆ PD. Now the convex polytope Q

can be seen as the convex hull of its vertices and of the integer points along its infinite

external edges. If we prove that Q has integer vertices then we would prove also Q ⊆ P̃D

since P̃D is the convex hull of all integer points inside PD; and hence Q = P̃D.

By computing the intersections of the planes in the definition (B.8) we can obtain

the corresponding resolution of the toric diagram and the vertices of the polytope Q. For

example one could obtain the resolution in figure 10 b), where the toric diagram has been

divided into 9 regions ρJ , I = 1 . . . 9, each corresponding to a vertex m0
J of the convex

polytope Q. The vertex m0
J is the intersection of the planes 〈m, ñi〉 + c̃i = 0, for all the

vertices ñi of the region ρJ . If the region ρJ we are considering has no internal integer

point, then by the Pick’s theorem [44] it is a triangle with minimal area 1/2; call its integer

vertices ñ1, ñ2 and ñ3. Since for this triangle det(ñ1, ñ2, ñ3) = 1, m0
J is an integer point.

Instead if the region ρJ has integer points inside it is easy to see from the construction

of Q that all the planes 〈m, ñi〉 + c̃i = 0, for any integer ñi internal to ρJ , pass through

the vertex m0
J . Hence we can take any complete resolution of the region ρJ into minimal

triangles and compute m0
J as the intersection of the planes associated to its three vertices.

Hence again m0
J is integer. All minimal triangles belonging to the region ρJ identify the

same m0
J .

We just proved that Q has integer vertices and hence Q = P̃D. Since P̃D is Calabi-Yau,

to compute the partition function ZD that counts its integer points we can use the method

derived above:

ZD =
∑

ρJ

qm0
J ZJ(q) (B.9)

where as before ZJ is the partition function counting integer points inside the cone with

apex in (0, 0, 0) generated by the edges mλ
J attached to vertex m0

J . Moreover the partition

functions ZJ can be computed using any complete resolution of the regions ρJ ; we obtain

therefore a refined resolution of the toric diagram in minimal triangles σI . The resulting

partition function is just formula (6.8).
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Note that there is some ambiguity in choosing the complete resolution of the toric

diagram into triangles σI ; however this resolution must be compatible with the starting ρJ

resolution. To summarize we have given an alternative proof of (6.8) and we have explicitly

built the integers c̃i associated with the internal points ñi ∈ Σ̃(1). Then the equations (B.8)

define a resolution ρJ of the toric diagram that can be further refined. Note that the two

conditions given in section 6.1 are naturally satisfied with this geometrical choice of c̃i; in

particular convexity (6.7) follows from the fact that m0
J are the vertices of P̃D.
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